Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(2): 568-575, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050084

RESUMO

Burn injuries including those caused by chemicals can result in systemic effects and acute lung injury (ALI). Cutaneous exposure to Lewisite, a warfare and chemical burn agent, also causes ALI. To overcome the limitations in conducting direct research on Lewisite-induced ALI in a laboratory setting, an animal model was developed using phenylarsine oxide (PAO) as a surrogate for Lewisite. Due to lack of a reliable animal model mimicking the effects of such exposures, development of effective therapies to treat such injuries is challenging. We demonstrated that a single cutaneous exposure to PAO resulted in disruption of the alveolar-capillary barrier as evidenced by elevated protein levels in the bronchoalveolar lavage fluid (BALF). BALF supernatant of PAO-exposed animals had increased levels of high mobility group box 1, a damage associated molecular pattern molecule. Arterial blood-gas measurements showed decreased pH, increased PaCO2, and decreased partial pressure of arterial O2, indicative of respiratory acidosis, hypercapnia, and hypoxemia. Increased protein levels of interleukin (IL)-6, CXCL-1, CXCL-2, CXCL-5, granulocyte-macrophage colony-stimulating factor, CXCL-10, leukemia inhibitory factor, leptin, IL-18, CCL-2, CCL-3, and CCL-7 were observed in the lung of PAO-exposed mice. Further, vascular endothelial growth factor levels were reduced in the lung. Pulmonary function evaluated using a flexiVent showed a downward shift in the pressure-volume loop, decreases in static compliance and inspiratory capacity, increases in respiratory elastance and tissue elastance. These changes are consistent with an ALI phenotype. These results demonstrate that cutaneous PAO exposure leads to ALI and that the model can be used as an effective surrogate to investigate vesicant-induced ALI. SIGNIFICANCE STATEMENT: This study presents a robust model for studying ALI resulting from cutaneous exposure to PAO, a surrogate for the toxic vesicating agent Lewisite. The findings in this study mimic the effects of cutaneous Lewisite exposure, providing a reliable model for investigating mechanisms underlying toxicity. The model can also be used to develop medical countermeasures to mitigate ALI associated with cutaneous Lewisite exposure.


Assuntos
Lesão Pulmonar Aguda , Arsenicais , Irritantes , Camundongos , Animais , Irritantes/efeitos adversos , Modelos Animais de Doenças , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Líquido da Lavagem Broncoalveolar/química , Interleucina-6/metabolismo
2.
Semin Cancer Biol ; 83: 384-398, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33484868

RESUMO

Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.


Assuntos
COVID-19 , Pneumopatias , Neoplasias Pulmonares , MicroRNAs , COVID-19/genética , Citocinas , Epigênese Genética , Humanos , Inflamação/genética , Pneumopatias/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , SARS-CoV-2
3.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204780

RESUMO

The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.


Assuntos
Comportamento Animal , Tronco Encefálico/patologia , Bromo/administração & dosagem , Bromo/efeitos adversos , Neurônios/patologia , Estresse Oxidativo , Administração por Inalação , Animais , Biomarcadores/metabolismo , Lesões Encefálicas/patologia , Catecolaminas/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Metaboloma , Neurônios/efeitos dos fármacos , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Arch Toxicol ; 95(1): 179-193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979061

RESUMO

Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.


Assuntos
Bromo , Cardiomegalia/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotoxicidade , Diástole , Modelos Animais de Doenças , Fibrose , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miocárdio/ultraestrutura , NADPH Oxidase 2/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sístole , Fatores de Tempo , Troponina I/metabolismo , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
5.
Ann N Y Acad Sci ; 1479(1): 148-158, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32602122

RESUMO

Exposure of rats to 2-chloroethyl ethyl sulfide (CEES), an analog of sulfur mustard, can cause acute lung injury (ALI), resulting in increased inflammation and coagulation and altered levels of plasma microRNAs (miRNAs). Rats were exposed to aerosolized CEES and euthanized 12 h later for collection of tissue and plasma. Profiling of miRNAs in plasma, using a TaqMan-based RT-PCR array, revealed 14 differentially expressed miRNAs. Target gene prediction and pathway analysis revealed miRNA-mediated regulation of organismal injury, inflammation, and respiratory diseases. miR-140-5p, a marker of ALI, was downregulated in the plasma, lung, liver, and kidney of CEES-exposed rats, with a concomitant increase in the expression of the inflammation markers IL-6 and IL-1α and the coagulation marker tissue factor (F3). Exposure of rat airway epithelial cells (RL-65) to CEES (0.5 mM) caused cell death and a decrease in miR-140-5p both in cells and media supernatant. This was accompanied by an increase in cellular mRNA levels of IL-6, IL-1α, and F3, as well as FGF9 and EGR2, putative targets of miR-140. Knockdown of miR-140 by specific oligos in RL-65 cells mimicked the in vivo CEES-mediated effects, leading to significantly increased mRNA levels of IL-6, IL-1α, F3, FGF9, and EGR2. Our study identifies miR-140-5p as a mediator of CEES-induced ALI, which could potentially be targeted for therapy.


Assuntos
Lesão Pulmonar Aguda , Coagulação Sanguínea/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , MicroRNAs/metabolismo , Gás de Mostarda/análogos & derivados , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , MicroRNAs/genética , Gás de Mostarda/toxicidade , Ratos , Ratos Sprague-Dawley
6.
Arch Toxicol ; 94(4): 1321-1334, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157350

RESUMO

Sulfur mustard (SM) is a highly toxic war chemical that causes significant morbidity and mortality and lacks any effective therapy. Rats exposed to aerosolized CEES (2-chloroethyl ethyl sulfide; 10% in ethanol), an analog of SM, developed acute respiratory distress syndrome (ARDS), which is characterized by increased inflammation, hypoxemia and impaired gas exchange. We observed elevated levels of extracellular nucleic acids (eNA) in the bronchoalveolar lavage fluid (BALF) of CEES-exposed animals. eNA can induce inflammation, coagulation and barrier dysfunction. Treatment with hexadimethrine bromide (HDMBr; 10 mg/kg), an eNA neutralizing agent, 2 h post-exposure, reduced lung injury, inhibited disruption of alveolar-capillary barrier, improved blood oxygenation (PaO2/FiO2 ratio), thus reversing ARDS symptoms. HDMBr treatment also reduced lung inflammation in the CEES-exposed animals by decreasing IL-6, IL-1A, CXCL-1 and CCL-2 mRNA levels in lung tissues and HMGB1 protein in BALF. Furthermore, HDMBr treatment also reduced levels of lung tissue factor and plasminogen activator inhibitor-1 indicating reduction in clot formation and increased fibrinolysis. Fibrin was reduced in BALF of the HDMBr-treated animals. This was further confirmed by histology that revealed diminished airway fibrin, epithelial sloughing and hyaline membrane in the lungs of HDMBr-treated animals. HDMBr completely rescued the CEES-associated mortality 12 h post-exposure when the survival rate in CEES-only group was just 50%. Experimental eNA treatment of cells caused increased inflammation that was reversed by HDMBr. These results demonstrate a role of eNA in the pathogenesis of CEES/SM-induced injury and that its neutralization can serve as a potential therapeutic approach in treating SM toxicity.


Assuntos
Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/análogos & derivados , Ácidos Nucleicos/metabolismo , Testes de Toxicidade , Animais , Pulmão , Lesão Pulmonar , Masculino , Gás de Mostarda/toxicidade , Ratos
7.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L94-L104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358437

RESUMO

Nicotine is a highly addictive principal component of both tobacco and electronic cigarette that is readily absorbed in blood. Nicotine-containing electronic cigarettes are promoted as a safe alternative to cigarette smoking. However, the isolated effects of inhaled nicotine are largely unknown. Here we report a novel rat model of aerosolized nicotine with a particle size (~1 µm) in the respirable diameter range. Acute nicotine inhalation caused increased pulmonary edema and lung injury as measured by enhanced bronchoalveolar lavage fluid protein, IgM, lung wet-to-dry weight ratio, and high-mobility group box 1 (HMGB1) protein and decreased lung E-cadherin protein. Immunohistochemical analysis revealed congested blood vessels and increased neutrophil infiltration. Lung myeloperoxidase mRNA and protein increased in the nicotine-exposed rats. Complete blood counts also showed an increase in neutrophils, white blood cells, eosinophils, and basophils. Arterial blood gas measurements showed an increase in lactate. Lungs of nicotine-inhaling animals revealed increased mRNA levels of IL-1A and CXCL1. There was also an increase in IL-1α protein. In in vitro air-liquid interface cultures of airway epithelial cells, there was a dose dependent increase in HMGB1 release with nicotine treatment. Air-liquid cultures exposed to nicotine also resulted in a dose-dependent loss of barrier as measured by transepithelial electrical resistance and a decrease in E-cadherin expression. Nicotine also caused a dose-dependent increase in epithelial cell death and an increase in caspase-3/7 activities. These results show that the nicotine content of electronic cigarettes may have adverse pulmonary and systemic effects.


Assuntos
Barreira Alveolocapilar , Nicotina/efeitos adversos , Vaping , Aerossóis , Animais , Barreira Alveolocapilar/lesões , Barreira Alveolocapilar/metabolismo , Barreira Alveolocapilar/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Quimiocina CXCL1/sangue , Proteína HMGB1/metabolismo , Imunoglobulina M/sangue , Interleucina-1alfa/sangue , Contagem de Leucócitos , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Nicotina/farmacologia , Tamanho da Partícula , Edema Pulmonar/sangue , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Vaping/efeitos adversos , Vaping/sangue , Vaping/patologia
8.
Food Funct ; 8(11): 4118-4128, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29019365

RESUMO

BACKGROUND: Blueberries (BB) have been shown to improve insulin sensitivity and endothelial function in obese and pre-diabetic humans, and decrease oxidative stress and inflammation, and ameliorate cardio-renal damage in rodents. This indicates that blueberries have a systemic effect and are not limited to a particular organ system. In order for blueberries to exert beneficial effects on the whole body, the mechanism would logically have to operate through modulation of cellular humoral factors. OBJECTIVE: This study investigated the role of blueberries in modulating immune cell levels and attenuating circulatory and monocyte inflammation and oxidative stress in metabolic syndrome (MetS) subjects. DESIGN: A double-blind, randomized and placebo-controlled study was conducted in adults with MetS, in which they received a blueberry (22.5 g freeze-dried) or placebo smoothie twice daily for six weeks. Free radical production in the whole blood and monocytes, dendritic cell (DC) levels, expression of cytokines in monocytes and serum inflammatory markers were assessed pre- and post-intervention. RESULTS: Baseline free radical levels in MetS subjects' samples were not different between groups. Treatment with blueberries markedly decreased superoxide and total reactive oxygen species (ROS) in whole blood and monocytes compared to the placebo (p ≤ 0.05). The baseline DC numbers in MetS subjects' samples in both groups were not different, however treatment with blueberries significantly increased myeloid DC (p ≤ 0.05) and had no effect on plasmacytoid cells. Blueberry treatment decreased monocyte gene expression of TNFα, IL-6, TLR4 and reduced serum GMCSF in MetS subjects when compared to the placebo treatment (p ≤ 0.05). CONCLUSIONS: The findings of the current study demonstrate that blueberries exert immunomodulatory effects and attenuate oxidative stress and inflammation in adults with MetS.


Assuntos
Mirtilos Azuis (Planta)/química , Suplementos Nutricionais/análise , Síndrome Metabólica/tratamento farmacológico , Monócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Adulto , Método Duplo-Cego , Feminino , Humanos , Interleucina-6/imunologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/imunologia , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Monócitos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
J Thorac Cardiovasc Surg ; 152(4): 1059-1070.e2, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464577

RESUMO

OBJECTIVE: Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. METHODS: Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for American Heart Association class I indications was evaluated for desmin, the voltage-dependent anion channel, α-B-crystallin, and α, ß-unsaturated aldehyde 4-hydroxynonenal by fluorescence microscopy. The same was evaluated in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients before and 6 months after mitral valve repair. RESULTS: LV end-diastolic volume was 1.5-fold (P < .0001) higher and LV mass-to-volume ratio was lower in MR (P = .004) hearts versus normal hearts and showed improvement 6 months after mitral valve surgery. However, LV ejection fraction decreased from 65% ± 7% to 52% ± 9% (P < .0001) and LV circumferential (P < .0001) and longitudinal strain decreased significantly below normal values (P = .002) after surgery. Hearts with MR had a 53% decrease in desmin (P < .0001) and a 2.6-fold increase in desmin aggregates (P < .0001) versus normal, along with substantial, intense perinuclear staining of α, ß-unsaturated aldehyde 4-hydroxynonenal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron-dense deposits, myofibrillar loss, Z-disc abnormalities, and extensive granulofilamentous debris identified as desmin-positive by immunogold transmission electron microscopy. CONCLUSIONS: Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain postoperative LV functional decline and further supports the move toward earlier surgical intervention.


Assuntos
Desmina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Insuficiência da Valva Mitral/metabolismo , Insuficiência da Valva Mitral/cirurgia , Função Ventricular Esquerda , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Pessoa de Meia-Idade , Miócitos Cardíacos/ultraestrutura , Resultado do Tratamento , Canais de Ânion Dependentes de Voltagem/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
10.
Am J Physiol Renal Physiol ; 305(5): F618-27, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23804447

RESUMO

We examined the effects of increased expression of proximal tubule peroxisome proliferator-activated receptor (PPAR)α in a mouse model of renal fibrosis. After 5 days of unilateral ureteral obstruction (UUO), PPARα expression was significantly reduced in kidney tissue of wild-type mice but this downregulation was attenuated in proximal tubules of PPARα transgenic (Tg) mice. When compared with wild-type mice subjected to UUO, PPARα Tg mice had reduced mRNA and protein expression of proximal tubule transforming growth factor (TGF)-ß1, with reduced production of extracellular matrix proteins including collagen 1, fibronectin, α-smooth muscle actin, and reduced tubulointerstitial fibrosis. UUO-mediated increased expression of microRNA 21 in kidney tissue was also reduced in PPARα Tg mice. Overexpression of PPARα in cultured proximal tubular cells by adenoviral transduction reduced aristolochic acid-mediated increased production of TGF-ß, demonstrating PPARα signaling reduces epithelial TGF-ß production. Flow cytometry studies of dissociated whole kidneys demonstrated reduced macrophage infiltration to kidney tissue in PPARα Tg mice after UUO. Increased expression of proinflammatory cytokines including IL-1ß, IL-6, and TNF-α in wild-type mice was also significantly reduced in kidney tissue of PPARα Tg mice. In contrast, the expression of anti-inflammatory cytokines IL-10 and arginase-1 was significantly increased in kidney tissue of PPARα Tg mice when compared with wild-type mice subjected to UUO. Our studies demonstrate several mechanisms by which preserved expression of proximal tubule PPARα reduces tubulointerstitial fibrosis and inflammation associated with obstructive uropathy.


Assuntos
Nefropatias/etiologia , PPAR alfa/fisiologia , Obstrução Ureteral/complicações , Animais , Arginase/biossíntese , Ácidos Aristolóquicos/farmacologia , Antígeno B7-2/biossíntese , Colágeno Tipo I/biossíntese , Colágeno Tipo IV , Regulação para Baixo , Fibrose , Interleucina-10/biossíntese , Túbulos Renais Proximais/metabolismo , Laminina/biossíntese , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , Nefrite/prevenção & controle , PPAR alfa/biossíntese , Fator de Crescimento Transformador beta/biossíntese
11.
PLoS One ; 7(10): e46568, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056347

RESUMO

Recent evidence suggests that tumor necrosis factor alpha (TNF) and angiotensin II (ANGII) induce oxidative stress contribute to cardiovascular disease progression. Here, we examined whether an interaction between TNF and ANGII contributes to altered cardiac mitochondrial biogenesis and ATP production to cause cardiac damage in rats. Rats received intraperitoneal injections of TNF (30 µg/kg), TNF + losartan (LOS, 1 mg/kg), or vehicle for 5 days. Left ventricular (LV) function was measured using echocardiography. Rats were sacrificed and LV tissues removed for gene expression, electron paramagnetic resonance and mitochondrial assays. TNF administration significantly increased expression of the NADPH oxidase subunit, gp91phox, and the angiotensin type 1 receptor (AT-1R) and decreased eNOS in the LV of rats. Rats that received TNF only had increased production rates of superoxide, peroxynitrite and total reactive oxygen species (ROS) in the cytosol and increased production rates of superoxide and hydrogen peroxide in mitochondria. Decreased activities of mitochondrial complexes I, II, and III and mitochondrial genes were observed in rats given TNF. In addition, TNF administration also resulted in a decrease in fractional shortening and an increase in Tei index, suggesting diastolic dysfunction. TNF administration with concomitant LOS treatment attenuated mitochondrial damage, restored cardiac function, and decreased expression of AT1-R and NADPH oxidase subunits. Mitochondrial biogenesis and function is severely impaired by TNF as evidenced by downregulation of mitochondrial genes and increased free radical production, and may contribute to cardiac damage. These defects are independent of the downregulation of mitochondrial gene expression, suggesting novel mechanisms for mitochondrial dysfunction in rats given TNF.


Assuntos
Angiotensina II/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Sequência de Bases , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Ratos , Ratos Sprague-Dawley
12.
Hypertension ; 59(1): 113-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106405

RESUMO

Hypertension is considered a low-grade inflammatory condition, and understanding the role of transcription factors in guiding this response is pertinent. A prominent transcription factor that governs inflammatory responses and has become a focal point in hypertensive research is nuclear factor-κB (NFκB). Within the hypothalamic paraventricular nucleus (PVN), a known brain cardioregulatory center, NFκB becomes potentially even more important in ultimately coordinating the systemic hypertensive response. To definitively demonstrate the role of NFκB in the neurogenic hypertensive response, we hypothesized that PVN NFκB blockade would attenuate angiotensin II-induced hypertension. Twelve-week-old male Sprague-Dawley rats were implanted with radiotelemetry probes for blood pressure measurement and allowed a 7-day recovery. After baseline blood pressure recordings, rats were administered either continuous NFκB decoy oligodeoxynucleotide infusion or microinjection of a serine mutated adenoviral inhibitory-κB vector, or their respective controls, bilaterally into the PVN to inhibit NFκB at two levels of its activation pathway. Simultaneously, rats were implanted subcutaneously with an angiotensin II or saline-filled 14-day osmotic minipump. After the 2-week treatments, rats were euthanized and brain tissues collected for PVN analysis. Bilaterally inhibited NFκB rats had a decrease in blood pressure, NFκB p65 subunit activity, proinflammatory cytokines, and reactive oxygen species, including the angiotensin II type 1 receptor, angiotensin-converting enzyme, tumor necrosis factor, and superoxide in angiotensin II-treated rats. Moreover, after NFκB blockade, key protective antihypertensive renin-angiotensin system components were upregulated. This demonstrates the important role that transcription factor NFκB plays within the PVN in modulating and perpetuating the hypertensive response via renin-angiotensin system modulation.


Assuntos
Angiotensina II/farmacologia , Hipertensão/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Fator de Transcrição RelA/metabolismo , Animais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Masculino , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Norepinefrina/sangue , Oligodesoxirribonucleotídeos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/fisiologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Vasoconstritores/farmacologia
13.
Antioxid Redox Signal ; 16(2): 139-52, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21895524

RESUMO

AIMS: Exercise training (ExT) is a recommended adjunct to many pharmaceutical antihypertensive therapies. The effects of chronic ExT on the development of hypertension-induced renal injury remain unknown. We examined whether ExT would preserve renal hemodynamics and structure in the spontaneously hypertensive rat (SHR), and whether these effects were mediated by improved redox status and decreased inflammation. Normotensive WKY rats and SHR underwent moderate-intensity ExT for 16 weeks. One group of SHR animals was treated with hydralazine to investigate the pressure-dependent/independent effects of ExT. Acute renal clearance experiments were performed prior to sacrifice. Tissue free radical production rates were measured by electron paramagnetic resonance; gene and protein expression were measured by real time RT-PCR and Western blot or immunofluorescence, respectively. Plasma angiotensin II levels and kidney antioxidants were assessed. Training efficacy was assessed by citrate synthase activity assay in hind-limb muscle. RESULTS: ExT delayed hypertension, prevented oxidative stress and inflammation, preserved antioxidant status, prevented an increase in circulating AngII levels, and preserved renal hemodynamics and structure in SHR. In addition, exercise-induced effects, at least, in part, were found to be pressure-independent. INNOVATION: This study is the first to provide mechanistic evidence for the renoprotective benefits of ExT in a model of hypertension. Our results demonstrate that initiation of ExT in susceptible patients can delay the development of hypertension and provide renoprotection at the functional and ultrastructural level. CONCLUSION: Chronic ExT preserves renal hemodynamics and structure in SHR; these effects are partially mediated by improved redox status and decreased inflammation.


Assuntos
Hemodinâmica , Rim/patologia , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Western Blotting , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS One ; 6(9): e24028, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949690

RESUMO

OBJECTIVE AND BACKGROUND: To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB) have among the highest antioxidant capacities of fruits and vegetables. METHODS AND RESULTS: Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w) or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS), peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver) assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group. CONCLUSION: Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development of hypertension-induced renal injury, and these effects appear to be mediated by a short-term hormetic response.


Assuntos
Antioxidantes/farmacologia , Mirtilos Azuis (Planta)/química , Dieta , Hipertensão/prevenção & controle , Nefropatias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Creatinina/urina , Glutationa/metabolismo , Hormese , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/fisiopatologia , Nefropatias/urina , Masculino , Nitratos/análise , Nitratos/urina , Nitritos/análise , Nitritos/urina , Fitoterapia/métodos , Preparações de Plantas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
15.
Basic Res Cardiol ; 106(2): 273-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21246206

RESUMO

This study examined the effect of central tumor necrosis factor-alpha (TNF) blockade on the imbalance between nitric oxide and superoxide production in the paraventricular nucleus (PVN) and ventrolateral medulla (VLM), key autonomic regulators, and their contribution to enhanced sympathetic drive in mice with congestive heart failure (CHF). We also used a TNF gene knockout (KO) mouse model to study the involvement of TNF in body fluid homeostasis and sympathoexcitation in CHF. After implantation of intracerebroventricular (ICV) cannulae, myocardial infarction (MI) was induced in wild-type (WT) and KO mice by coronary artery ligation. Osmotic mini-pumps were implanted into one set of WT + MI/Sham mice for continuous ICV infusion of Etanercept (ETN), a TNF receptor fusion protein, or vehicle (VEH). Gene expressions of neuronal nitric oxide synthase (NOS) and angiotensin receptor-type 2 were reduced, while those of inducible NOS, Nox2 homologs, superoxide, peroxynitrite and angiotensin receptor-type 1 were elevated in the brainstem and hypothalamus of MI + VEH. Plasma norepinephrine levels and the number of Fos-positive neurons were also increased in the PVN and VLM in MI + VEH. MI + ETN and KO + MI mice exhibited reduced oxidative stress, reduced sympathoexcitation and an improved cardiac function. These changes in WT + MI were associated with increased sodium and fluid retention. These results indicate that elevated TNF in these autonomic regulatory regions of the brain alter the production of superoxide and nitric oxide, contributing to fluid imbalance and sympathoexcitation in CHF.


Assuntos
Tronco Encefálico/metabolismo , Insuficiência Cardíaca/metabolismo , Óxido Nítrico/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Citocinas/metabolismo , Progressão da Doença , Etanercepte , Insuficiência Cardíaca/fisiopatologia , Homeostase , Imunoglobulina G/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Sódio/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
16.
Am J Respir Crit Care Med ; 182(8): 1065-72, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20581171

RESUMO

RATIONALE: An activated vasoconstrictive, proliferative, and fibrotic axis of the renin angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin [Ang]II/AngII type 1 receptor) has been implicated in the pathophysiology of pulmonary fibrosis (PF) and pulmonary hypertension (PH). The recent discovery of a counterregulatory axis of the renin angiotensin system composed of ACE2/Ang-(1-7)/Mas has led us to examine the role of this vasoprotective axis on such disorders. OBJECTIVES: We hypothesized that Ang-(1-7) treatment would exert protective effects against PF and PH. METHODS: Lentiviral packaged Ang-(1-7) fusion gene or ACE2 cDNA was intratracheally administered into the lungs of male Sprague Dawley rats. Two weeks after gene transfer, animals received bleomycin (2.5 mg/kg). In a subsequent study, animals were administered monocrotaline (MCT, 50 mg/kg). MEASUREMENTS AND MAIN RESULTS: In the PF study, bleomycin administration resulted in a significant increase in right ventricular systolic pressure, which was associated with the development of right ventricular hypertrophy. The lungs of these animals also exhibited excessive collagen deposition, decreased expression of ACE and ACE2, increased mRNA levels for transforming growth factor ß and other proinflammatory cytokines, and increased protein levels of the AT1R. Overexpression of Ang-(1-7) significantly prevented all the above-mentioned pathophysiological conditions. Similar protective effects were also obtained with ACE2 overexpression. In the PH study, rats injected with MCT developed elevated right ventricular systolic pressure, right ventricular hypertrophy, right ventricular fibrosis, and pulmonary vascular remodeling, all of which were attenuated by Ang-(1-7) overexpression. Blockade of the Mas receptor abolished the beneficial effects of Ang-(1-7) against MCT-induced PH. CONCLUSIONS: Our observations demonstrate a cardiopulmonary protective role for the ACE2/Ang-(1-7)/Mas axis in the treatment of lung disorders.


Assuntos
Angiotensina I/genética , Terapia Genética , Hipertensão Pulmonar/prevenção & controle , Fragmentos de Peptídeos/genética , Fibrose Pulmonar/prevenção & controle , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Bleomicina , Hipertensão Pulmonar/patologia , Masculino , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução Genética
17.
Cardiovasc Res ; 85(3): 473-83, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19729361

RESUMO

AIMS: Inflammatory molecules and their transcription factor, nuclear factor kappa-B (NF-kappaB), are thought to play important roles in diabetes-induced cardiac dysfunction. Here, we investigated the effects of pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, in diabetic mice. METHODS AND RESULTS: Obese db/db mice and heterozygous lean mice (n = 8) were allowed free access to drinking water (control) or water containing PDTC (100 mg/kg) for 20 weeks. Left ventricular (LV) function was measured using echocardiography at baseline and at study end. Mice were sacrificed and LV removed for gene expression, biochemical, immunofluorescence, and mitochondrial assays. LV and mitochondrial reactive oxygen species (ROS), superoxide and peroxynitrite were measured using electron spin resonance spectroscopy. Enhanced NF-kappaB activity in db/db mice was associated with increased oxidative stress as demonstrated by increased ROS, superoxide, and peroxynitrite production, and increased NF-kappaB, gp91phox, and Nox1 expression; PDTC ameliorated these effects. Mitochondrial free radical production and structural damage were higher in the db/db group than in the control, db/db PDTC, and PDTC-treated heterozygous animal groups. CONCLUSION: This study demonstrates that NF-kappaB blockade with PDTC mitigates oxidative stress and improves mitochondrial structural integrity directly, through down-regulation of increased oxygen-free radicals, thereby increasing ATP synthesis and thus restoring cardiac function in type II diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Coração/fisiopatologia , Mitocôndrias/fisiologia , NF-kappa B/fisiologia , Estresse Oxidativo , Animais , Peso Corporal , Ecocardiografia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Glutationa/análise , Interleucina-6/sangue , Masculino , Camundongos , NF-kappa B/análise , NF-kappa B/antagonistas & inibidores , Tamanho do Órgão , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/sangue
18.
Hypertension ; 54(6): 1393-400, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19841289

RESUMO

Hypertension is a well-known risk factor for various cardiovascular diseases. Recently, exercise has been recommended as a part of lifestyle modification for all hypertensive patients. However, the precise mechanisms of exercise training (ExT)-induced effects on the development of hypertension are poorly understood. Therefore, we hypothesized that chronic ExT would delay the progression of hypertension in young spontaneously hypertensive rats (SHRs). In addition, we explored whether the beneficial effects of chronic ExT were mediated by reduced proinflammatory cytokines and improved redox status. We also investigated the involvement of nuclear factor-kappaB in exercise-induced effects. To test our hypotheses, young normotensive (Wistar-Kyoto) and SHRs were given moderate-intensity ExT for 16 weeks. Blood pressure was determined by the tail-cuff method, and cardiac function was assessed by echocardiography. Myocardial total reactive oxygen species and superoxide production were measured by electron paramagnetic resonance spectroscopy; tumor necrosis factor-alpha, interleukin-1beta, gp91(phox), and inducible NO synthase by real-time PCR; and nuclear factor kappaB activity by electrophoretic mobility shift assay. Chronic ExT in hypertensive rats resulted in significantly reduced blood pressure, reduced concentric hypertrophy, and improved diastolic function. ExT significantly reduced proinflammatory cytokines and inducible NO synthase, attenuated total reactive oxygen species and superoxide production, and increased antioxidants in SHRs. ExT also resulted in increased NO production and decreased nuclear factor kappaB activity in SHRs. In summary, chronic ExT delays the progression of hypertension and improves cardiac function in young SHRs; these ExT-induced beneficial effects are mediated by reduced proinflammatory cytokines and improved redox homeostasis via downregulation of nuclear factor-kappaB.


Assuntos
Hipertensão/imunologia , Interleucina-1beta/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Esforço Físico/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Cardiomegalia/imunologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diástole/fisiologia , Progressão da Doença , Homeostase/fisiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/sangue , Oxirredução , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Função Ventricular Esquerda/fisiologia
19.
Obesity (Silver Spring) ; 17(11): 1994-2002, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19424163

RESUMO

Diabetic nephropathy is the leading cause of renal failure in the United States. The obese Zucker rat (OZR; fa/fa) is a commonly used model of type 2 diabetes and metabolic syndrome (MetS), and of the nephropathy and renal oxidative stress commonly seen in these disorders. Heterozygous lean Zucker rats (LZRs; fa/+) are susceptible to high-fat diet (HFD)-induced obesity and MetS. The present study was designed to investigate whether 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL), a membrane-permeable radical scavenger, could alleviate the renal effects of MetS in OZR and LZR fed a HFD, which resembles the typical "Western" diet. OZR and LZR were fed a HFD (OZR-HFD and LZR-HFD) or regular diet (OZR-RD and LZR-RD) and allowed free access to drinking water or water containing 1 mmol/l TEMPOL for 10 weeks. When compared to OZR-RD animals, OZR-HFD animals exhibited significantly higher levels of total renal cortical reactive oxygen species (ROS) production, plasma lipids, insulin, C-reactive protein, blood urea nitrogen (BUN), creatinine (Cr), and urinary albumin excretion (P < 0.05); these changes were accompanied by a significant decrease in plasma high-density lipoprotein levels (P < 0.05). The mRNA expression levels of desmin, tumor necrosis factor-alpha (TNF-alpha), nuclear factor kappaB (NFkappaB), and NAD(P)H oxidase-1 (NOX-1) were significantly higher in the renal cortical tissues of OZR-HFD animals; NFkappaB p65 DNA binding activity as determined by electrophoretic mobility shift assay was also significantly higher in these animals. The same trends were noted in LZR-HFD animals. Our data demonstrate that TEMPOL may prove beneficial in treating the early stages of the nephropathy often associated with MetS.


Assuntos
Antioxidantes/uso terapêutico , Óxidos N-Cíclicos/uso terapêutico , Nefropatias/tratamento farmacológico , Síndrome Metabólica/complicações , Espécies Reativas de Oxigênio/análise , Animais , Antioxidantes/farmacologia , Pressão Sanguínea , Óxidos N-Cíclicos/farmacologia , Desmina/genética , Desmina/metabolismo , Gorduras na Dieta/administração & dosagem , Espectroscopia de Ressonância de Spin Eletrônica , Homozigoto , Córtex Renal/química , Córtex Renal/patologia , Nefropatias/complicações , Glomérulos Renais/ultraestrutura , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Ratos Zucker , Marcadores de Spin , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Free Radic Biol Med ; 46(4): 462-70, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19041937

RESUMO

Mitochondrial damage is implicated in the progression of cardiac disease. Considerable evidence suggests that proinflammatory cytokines induce oxidative stress and contribute to cardiac dysfunction. This study was conducted to determine whether a TNF-induced increase in superoxide (O(2)(*)(-)) contributes to mitochondrial damage in the left ventricle (LV) by impairing respiratory complex I activity. We employed an electron paramagnetic resonance (EPR) method to measure O(2)(*)(-) and oxygen consumption in mitochondrial respiratory complexes, using an oxygen label. Adult male Sprague-Dawley rats were divided into four groups: control, TNF treatment (ip), TNF+ apocynin (APO; 200 micromol/kg bw, orally), and TNF+ Tempol (Temp; 300 micromol/kg bw, orally). TNF was injected daily for 5 days. Rats were sacrificed, LV tissue was collected, and mitochondria were isolated for EPR studies. Total LV ROS production was significantly higher in TNF animals than in controls; APO or Temp treatment ameliorated TNF-induced LV ROS production. Total mitochondrial ROS production was significantly higher in the TNF and TNF+ APO groups than in the control and TNF+ Temp groups. These findings suggest that TNF alters the cellular redox state, reduces the expression of four complex I subunits by increasing mitochondrial O(2)(*)(-) production and depleting ATP synthesis, and decreases oxygen consumption, thereby resulting in mitochondrial damage and leading to LV dysfunction.


Assuntos
Citotoxicidade Imunológica/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Disfunção Ventricular Esquerda/enzimologia , Acetofenonas/administração & dosagem , Animais , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Óxidos N-Cíclicos/administração & dosagem , Citotoxicidade Imunológica/efeitos dos fármacos , Ecocardiografia , Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/genética , Sequestradores de Radicais Livres/administração & dosagem , Masculino , Miocárdio/enzimologia , Miocárdio/imunologia , Miocárdio/ultraestrutura , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Ratos , Ratos Sprague-Dawley , Marcadores de Spin , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/administração & dosagem , Disfunção Ventricular Esquerda/imunologia , Disfunção Ventricular Esquerda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA