Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2070-2086.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703770

RESUMO

The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.


Assuntos
Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Exossomos/metabolismo , Exossomos/genética , Íntrons , Ligação Proteica , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Regulação Neoplásica da Expressão Gênica , RNA/metabolismo , RNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proliferação de Células
2.
Oncogene ; 43(8): 578-593, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182898

RESUMO

YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
3.
Cell Death Dis ; 14(4): 281, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080964

RESUMO

Ferroptosis is a form of cell death characterized by phospholipid peroxidation, where numerous studies have suggested that the induction of ferroptosis is a therapeutic strategy to target therapy refractory cancer entities. Ferroptosis suppressor protein 1 (FSP1), an NAD(P)H-ubiquinone reductase, is a key determinant of ferroptosis vulnerability, and its pharmacological inhibition was shown to strongly sensitize cancer cells to ferroptosis. A first generation of FSP1 inhibitors, exemplified by the small molecule iFSP1, has been reported; however, the molecular mechanisms underlying inhibition have not been characterized in detail. In this study, we explore the species-specific inhibition of iFSP1 on the human isoform to gain insights into its mechanism of action. Using a combination of cellular, biochemical, and computational methods, we establish a critical contribution of a species-specific aromatic architecture that is essential for target engagement. The results described here provide valuable insights for the rational development of second-generation FSP1 inhibitors combined with a tracer for screening the druggable pocket. In addition, we pose a cautionary notice for using iFSP1 in animal models, specifically murine models.


Assuntos
Ferroptose , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular , Linhagem Celular Tumoral , Ferroptose/genética , Peroxidação de Lipídeos , Proteínas Mitocondriais/metabolismo
4.
Methods Mol Biol ; 2578: 17-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152277

RESUMO

Antibody-mediated neurological diseases constitute an emerging clinical entity that remains to be fully explored. Recent studies identified autoantibodies that directly confer pathogenicity, and it was shown that in these cases immunotherapies can result in profound positive patient responses. These advances highlight the urgent need for improved means to effectively screen patient samples for novel autoantibodies (aAbs) and their subsequent characterization. Here, we discuss challenges and opportunities for peptide microarrays to contribute to the identification, mapping, and characterization of the underlying monospecific disease-defining binding surfaces. We outline control experiments, workflow modifications and bioinformatic filtering methods that enhance the predictive power of array-based studies. Further, we highlight experimental and computer-based display approaches that have the potential to expand the use of synthetic microarrays over the detection of discontinuous epitopes. Knowledge over the autoantibody epitopes in neurological disease will enhance our understanding of the pathological mechanisms and thereby potentially contribute to novel diagnostic approaches or even innovative antigen-specific treatments that avoid the serious adverse effects seen with currently used immunosuppressive therapies.


Assuntos
Autoanticorpos , Doenças do Sistema Nervoso , Biologia Computacional , Mapeamento de Epitopos/métodos , Epitopos , Humanos , Análise em Microsséries , Doenças do Sistema Nervoso/diagnóstico , Peptídeos/química
5.
Methods Mol Biol ; 2578: 143-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152285

RESUMO

While an ever-increasing number of protein-protein interactions were studied by peptide microarrays with great success, array-based investigations of transiently binding proteins, such as HDACs, and precise binding quantification, remained challenging. Here, we present an updated protocol for the preparation and use of peptide microarrays including the necessary adjustments for simple semi-quantitative and precise measurements across affinity ranges. This procedure describes the mass spectrometric controlled preparation of peptide microarrays in µSPOT format, and their application in binding profiling of recombinant, as well as endogenous, native proteins. We further highlight how cross-linking, blocking, and enzyme stalling can be leveraged to enhance sensitivity and describe how in situ on-chip binding neutralization can enhance the predictive value and robustness of the binding readout. Finally, we included examples for the integration of precise biophysical binding readouts that complement the traditional array-based binding assays.


Assuntos
Peptídeos , Proteínas , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise Serial de Proteínas/métodos
6.
Commun Biol ; 5(1): 1070, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207490

RESUMO

Multivalent protein interactors are an attractive modality for probing protein function and exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art methodologies and workflows for the effective development of multivalent binders is currently limited by surface immobilization, fluorescent labelling and sample consumption. Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic and thermodynamic optimization of multivalent peptide architectures. High throughput synthesis of +100 peptides with varying combinatorial dimeric, tetrameric, and octameric architectures combined with direct FPS measurements resolved on-rates, off-rates, and dissociation constants with high accuracy and low sample consumption compared to three complementary technologies. The dataset and its machine learning-based analysis deciphered the relationship of specific architectural features and binding kinetics and thereby identified binders with unprecedented protein inhibition capacity; thus, highlighting the value of FPS for the rational engineering of multivalent inhibitors.


Assuntos
Peptídeos , Fluorescência , Cinética , Preparações Farmacêuticas , Termodinâmica
7.
Nat Genet ; 51(6): 990-998, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133746

RESUMO

The histone acetyl reader bromodomain-containing protein 4 (BRD4) is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1 (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1). We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression; pharmacological inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin associated suggests a direct role for nuclear metabolism in the control of gene expression.


Assuntos
Ácido Fólico/metabolismo , Regulação da Expressão Gênica , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/genética , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Transdução de Sinais , Transcrição Gênica
8.
Mol Cell ; 74(4): 674-687.e11, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30928206

RESUMO

The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.


Assuntos
Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Chaperonas de Histonas/genética , Humanos , Neoplasias/genética , Regiões Promotoras Genéticas , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Nat Commun ; 9(1): 3130, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087324

RESUMO

Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.


Assuntos
Receptores de GABA-A/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Convulsões/tratamento farmacológico , Convulsões/mortalidade , Animais , Encéfalo/metabolismo , Eletroencefalografia , Células HEK293 , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peptídeos/química , Fenótipo , Ligação Proteica , Domínios Proteicos , Receptores de GABA-A/genética , Sinapses/metabolismo , Transmissão Sináptica
10.
Cell Rep ; 21(12): 3483-3497, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262328

RESUMO

MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.


Assuntos
Aurora Quinase A/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , RNA Polimerase II/metabolismo , Fase S , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , DNA Intergênico/metabolismo , Proteínas de Ligação a DNA , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , Elongação da Transcrição Genética , Fatores de Transcrição TFIII/metabolismo
11.
Nat Chem Biol ; 13(2): 153-160, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27893705

RESUMO

γ-Aminobutyric acid type A and glycine receptors are the major mediators of fast synaptic inhibition in the human central nervous system and are established drug targets. However, all drugs targeting these receptors bind to the extracellular ligand-binding domain of the receptors, which inherently is associated with perturbation of the basic physiological action. Here we pursue a fundamentally different approach, by instead targeting the intracellular receptor-gephyrin interaction. First, we defined the gephyrin peptide-binding consensus sequence, which facilitated the development of gephyrin super-binding peptides and later effective affinity probes for the isolation of native gephyrin. Next, we demonstrated that fluorescent super-binding peptides could be used to directly visualize inhibitory postsynaptic sites for the first time in conventional and super-resolution microscopy. Finally, we demonstrate that the gephyrin super-binding peptides act as acute intracellular modulators of fast synaptic inhibition by modulating receptor clustering, thus being conceptually novel modulators of inhibitory neurotransmission.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/análise , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Proteínas de Transporte/química , Células Cultivadas , Células HEK293 , Humanos , Luminescência , Proteínas de Membrana/química , Camundongos , Peptídeos/síntese química , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA