Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Nat Rev Drug Discov ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622310

RESUMO

Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.

2.
J Transl Med ; 22(1): 270, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475820

RESUMO

Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/terapia , Antineoplásicos/uso terapêutico , Citocinas/metabolismo , Microambiente Tumoral
3.
Nat Med ; 30(2): 507-518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233586

RESUMO

The phase 3 ZUMA-7 trial in second-line large B cell lymphoma demonstrated superiority of anti-CD19 CAR T cell therapy (axicabtagene ciloleucel (axi-cel)) over standard of care (SOC; salvage chemotherapy followed by hematopoietic transplantation) ( NCT03391466 ). Here, we present a prespecified exploratory analysis examining the association between pretreatment tumor characteristics and the efficacy of axi-cel versus SOC. B cell gene expression signature (GES) and CD19 expression associated significantly with improved event-free survival for axi-cel (P = 0.0002 for B cell GES; P = 0.0165 for CD19 expression) but not SOC (P = 0.9374 for B cell GES; P = 0.5526 for CD19 expression). Axi-cel showed superior event-free survival over SOC irrespective of B cell GES and CD19 expression (P = 8.56 × 10-9 for B cell GES high; P = 0.0019 for B cell GES low; P = 3.85 × 10-9 for CD19 gene high; P = 0.0017 for CD19 gene low). Low CD19 expression in malignant cells correlated with a tumor GES consisting of immune-suppressive stromal and myeloid genes, highlighting the inter-relation between malignant cell features and immune contexture substantially impacting axi-cel outcomes. Tumor burden, lactate dehydrogenase and cell-of-origin impacted SOC more than axi-cel outcomes. T cell activation and B cell GES, which are associated with improved axi-cel outcome, decreased with increasing lines of therapy. These data highlight differences in resistance mechanisms to axi-cel and SOC and support earlier intervention with axi-cel.


Assuntos
Produtos Biológicos , Linfoma Difuso de Grandes Células B , Humanos , Imunoterapia Adotiva , Microambiente Tumoral , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Linfócitos B , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19
4.
J Transl Med ; 21(1): 830, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978542

RESUMO

Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Neoplasias , Humanos , Medicina de Precisão/métodos , Imunoterapia/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , RNA Mensageiro/genética , Neoplasias/terapia
5.
J Transl Med ; 21(1): 682, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779207

RESUMO

BACKGROUND: Recent progress in cancer immunotherapy encourages the expansion of chimeric antigen receptor (CAR) T cell therapy in solid tumors including hepatocellular carcinoma (HCC). Overexpression of MET receptor tyrosine kinase is common in HCC; however, MET inhibitors are effective only when MET is in an active form, making patient stratification difficult. Specific MET-targeting CAR-T cells hold the promise of targeting HCC with MET overexpression regardless of signaling pathway activity. METHODS: MET-specific CARs with CD28ζ or 4-1BBζ as co-stimulation domains were constructed. MET-CAR-T cells derived from healthy subjects (HS) and HCC patients were evaluated for their killing activity and cytokine release against HCC cells with various MET activations in vitro, and for their tumor growth inhibition in orthotopic xenograft models in vivo. RESULTS: MET-CAR.CD28ζ and MET-CAR.4-1BBζ T cells derived from both HS and HCC patients specifically killed MET-positive HCC cells. When stimulated with MET-positive HCC cells in vitro, MET-CAR.CD28ζ T cells demonstrated a higher level of cytokine release and expression of programmed cell death protein 1 (PD-1) than MET-CAR.4-1BBζ T cells. When analyzed in vivo, MET-CAR.CD28ζ T cells more effectively inhibited HCC orthotopic tumor growth in mice when compared to MET-CAR.4-1BBζ T cells. CONCLUSION: We generated and characterized MET-specific CAR-T cells for targeting HCC with MET overexpression regardless of MET activation. Compared with MET-CAR.4-1BBζ, MET-CAR.CD28ζ T cells showed a higher anti-HCC potency but also a higher level of T cell exhaustion. While MET-CAR.CD28ζ is preferred for further development, overcoming the exhaustion of MET-CAR-T cells is necessary to improve their therapeutic efficacy in vivo.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linfócitos T , Proteínas Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia Adotiva , Citocinas/metabolismo , Transdução de Sinais
6.
Cancer Cell ; 41(10): 1689-1695, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714150

RESUMO

Successful implementation of adoptive cell therapy (ACT) of cancer requires comprehensively addressing biological and practical challenges. This approach has been largely overlooked, resulting in a gap between the potential of ACT and its actual effectiveness. We summarize the most promising technical strategies in creating an "ideal" ACT product, focusing on chimeric antigen receptor (CAR)-engineered cells. Since many requirements for effective ACT are common to most cancers, what we outline here might have a broader impact.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
8.
Nat Med ; 29(5): 1273-1286, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202560

RESUMO

The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias do Colo , Humanos , Estudos de Coortes , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Transcriptoma , Microambiente Tumoral
9.
J Transl Med ; 21(1): 162, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864446

RESUMO

Mammalian cells responding to specific perturbations of homeostasis can undergo a regulated variant of cell death that elicits adaptive immune responses. As immunogenic cell death (ICD) can only occur in a precise cellular and organismal context, it should be conceptually differentiated from instances of immunostimulation or inflammatory responses that do not mechanistically depend on cellular demise. Here, we critically discuss key conceptual and mechanistic aspects of ICD and its implications for cancer (immuno)therapy.


Assuntos
Morte Celular Imunogênica , Neoplasias , Animais , Neoplasias/terapia , Morte Celular , Diferenciação Celular , Homeostase , Mamíferos
10.
J Transl Med ; 21(1): 158, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855120

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies for the treatment of hematological malignancies experienced tremendous progress in the last decade. However, essential limitations need to be addressed to further improve efficacy and reduce toxicity to assure CAR-T cell persistence, trafficking to the tumor site, resistance to an hostile tumor microenvironment (TME), and containment of toxicity restricting production of powerful but potentially toxic bioproducts to the TME; the last could be achieved through contextual release upon tumor antigen encounter of factors capable of converting an immune suppressive TME into one conducive to immune rejection. METHODS: We created an HER2-targeting CAR-T (RB-312) using a clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system, which induces the expression of the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. This circuit includes two lentiviral constructs. The first one (HER2-TEV) expresses an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3z co-stimulatory domains linked to the tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the interleukin (IL)-12A and IL12B transcription start site (TSS), respectively. The second construct (LdCV) encodes linker for activation of T cells (LAT) fused to nuclease-deactivated Streptococcus Pyogenes Cas9 (dCas9)-VP64-p65-Rta (VPR) via a TEV-cleavable sequence (TCS). Activation of the CAR brings HER2-TEV in close proximity to LdCV releasing dCas9 for nuclear localization. This conditional circuit leads to conditional and reversible induction of the IL-12/p70 heterodimer. RB-312 was compared in vitro to controls (cRB-312), lacking the IL-12 sgRNAs and conventional HER2 CAR (convCAR). RESULTS: The inducible CRISPRa system activated endogenous IL-12 expression resulting in enhanced secondary interferon (FN)-γ production, cytotoxicity, and CAR-T proliferation in vitro, prolonged in vivo persistence and greater suppression of HER2+ FaDu oropharyngeal cancer cell growth compared to the conventional CAR-T cell product. No systemic IL-12 was detected in the peripheral circulation. Moreover, the combination with programmed death ligand (PD-L1) blockade demonstrated robust synergistic effects. CONCLUSIONS: RB-312, the first clinically relevant product incorporating a CRISPRa system with non-gene editing and reversible upregulation of endogenous gene expression that promotes CAR-T cells persistence and effectiveness against HER2-expressing tumors. The autocrine effects of reversible, nanoscale IL-12 production limits the risk of off-tumor leakage and systemic toxicity.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Antígeno B7-H1 , Antígenos CD28 , Interleucina-12/genética , Ligantes , Neoplasias/terapia , Sistemas de Liberação de Medicamentos
11.
Mol Cancer ; 22(1): 20, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717905

RESUMO

In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Estudos Prospectivos , Neoplasias/patologia , Imunoterapia Adotiva/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
12.
J Transl Med ; 19(1): 459, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743703

RESUMO

BACKGROUND: Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. METHODS: To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. RESULTS: Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. CONCLUSIONS: As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Antígenos CD28/genética , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , RNA Guia de Cinetoplastídeos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
13.
Am J Pathol ; 191(10): 1774-1786, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303699

RESUMO

Viruses are the second leading cause of cancer worldwide, and human papillomavirus (HPV)-associated head and neck cancers are increasing in incidence in the United States. HPV preferentially infects the crypts of the tonsils rather than the surface epithelium. The present study sought to characterize the unique microenvironment within the crypts to better understand the viral tropism of HPV to a lymphoid-rich organ. Laser-capture microdissection of distinct anatomic areas (crypts, surface epithelium, and germinal centers) of the tonsil, coupled with transcriptional analysis and multiparameter immunofluorescence staining demonstrated that the tonsillar crypts are enriched with myeloid populations that co-express multiple canonical and noncanonical immune checkpoints, including PD-L1, CTLA-4, HAVCR2 (TIM-3), ADORA2A, IDO1, BTLA, LGALS3, CDH1, CEACAM1, PVR, and C10orf54 (VISTA). The resident monocytes may foster a permissive microenvironment that facilitates HPV infection and persistence. Furthermore, the myeloid populations within HPV-associated tonsil cancers co-express the same immune checkpoints, providing insight into potential novel immunotherapeutic targets for HPV-associated head and neck cancers.


Assuntos
Alphapapillomavirus/fisiologia , Células Mieloides/patologia , Células Mieloides/virologia , Tonsila Palatina/patologia , Tonsila Palatina/virologia , Tropismo Viral/fisiologia , Antígenos CD/metabolismo , Antígenos B7/metabolismo , Antígeno B7-H1/metabolismo , Moléculas de Adesão Celular/metabolismo , Epitélio/patologia , Epitélio/virologia , Centro Germinativo/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Microdissecção e Captura a Laser , Monócitos/patologia , Receptores Virais/metabolismo , Transcriptoma/genética
14.
Immunity ; 54(2): 367-386.e8, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567262

RESUMO

Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.


Assuntos
Mutação em Linhagem Germinativa/genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Estudo de Associação Genômica Ampla , Humanos , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Característica Quantitativa Herdável , Proteína p107 Retinoblastoma-Like/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
J Transl Med ; 19(1): 9, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407613

RESUMO

Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.


Assuntos
Imunoterapia , Neoplasias , Hipóxia Celular , Humanos , Hipóxia , Linfócitos T , Microambiente Tumoral
16.
Br J Cancer ; 124(4): 760-769, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139798

RESUMO

BACKGROUND: The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS: We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFß, EMT and PI3Kγ signatures. RESULTS: Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS: The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.


Assuntos
Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Estudos de Coortes , Bases de Dados Genéticas , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Vigilância Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Análise de Sobrevida
18.
Oncoimmunology ; 9(1): 1826132, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33194317

RESUMO

The multicenter international Society for Immunotherapy of Cancer (SITC) study of the consensus Immunoscore demonstrated the prediction of survival and response to chemotherapy in 763 Stage III colon cancer (CC) patients. Similar Immunoscore groups were found in elderly patients, and densities of immune cells and intratumoral T-cell repertoire were not decreasing with age in the tumor microenvironment. In two independent cohorts, Immunoscore significantly predicted time to recurrence (TTR), disease-free survival (DFS), and overall survival (OS), including within high-risk (T4 or N2) and low-risk (T1-3, N1) patients. In stratified Cox multivariable analysis for TTR, DFS, and OS, Immunoscore's association to outcomes was independent of the patient's age, sidedness, gender, T-stage, N-stage, and microsatellite instability status. Furthermore, the relative contribution to the risk test showed that Immunoscore had the highest contribution to survival. Importantly Immunoscore predicted the likelihood of response to chemotherapy. Only patients with a high-Immunoscore significantly benefited from chemotherapy. The prognostic value of Immunoscore was confirmed in two independent phase 3 clinical trials (NCCTG-N0147, n = 559; Prodige-IDEA, n = 1062). Moreover, results from IDEA phase 3 randomized trial revealed the predictive value of Immunoscore for response to adjuvant FOLFOX chemotherapy duration. The latest edition of the WHO Digestive System Tumors classification introduced the immune response as measured by Immunoscore as essential and desirable diagnostic criteria for CC, and Immunoscore was introduced into the 2020 ESMO Clinical Practice Guidelines for CC to refine the prognosis and adjust chemotherapy decision-making process in stages II and III patients. These results highlight the clinical utility of Immunoscore.


Assuntos
Neoplasias do Colo , Recidiva Local de Neoplasia , Idoso , Quimioterapia Adjuvante , Neoplasias do Colo/tratamento farmacológico , Consenso , Humanos , Estudos Multicêntricos como Assunto , Estadiamento de Neoplasias , Microambiente Tumoral
19.
J Transl Med ; 18(1): 363, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967676

RESUMO

BACKGROUND: Adoptive transfer of engineered immune cells is a promising strategy for cancer treatment. However, low transduction efficiency particularly when large payload lentiviral vectors are used on primary T cells is a limitation for the development of cell therapy platforms that include multiple constructs bearing long DNA sequences. RB-340-1 is a new CAR T cell that combines two strategies in one product through a CRISPR interference (CRISPRi) circuit. Because multiple regulatory components are included in the circuit, RB-340-1 production needs delivery of two lentiviral vectors into human primary T cells, both containing long DNA sequences. To improve lentiviral transduction efficiency, we looked for inhibitors of receptors involved in antiviral response. BX795 is a pharmacological inhibitor of the TBK1/IKKɛ complex, which has been reported to augment lentiviral transduction of human NK cells and some cell lines, but it has not been tested with human primary T cells. The purpose of this study was to test if BX795 treatment promotes large payload RB-340-1 lentiviral transduction of human primary T cells. METHODS: To make the detection of gene delivery more convenient, we constructed another set of RB-340-1 constructs containing fluorescent labels named RB-340-1F. We incorporated BX795 treatment into the human primary T cell transduction procedure that was optimized for RB-340-1F. We tested BX795 with T cells collected from multiple donors, and detected the effect of BX795 on T cell transduction, phenotype, cell growth and cell function. RESULTS: We found that BX795 promotes RB-340-1F lentiviral transduction of human primary T cells, without dramatic change in cell growth and T cell functions. Meanwhile, BX795 treatment increased CD8+ T cell ratios in transduced T cells. CONCLUSIONS: These results indicate that BX795 treatment is effective, and might be a safe approach to promote RB-340-1F lentiviral transduction of human primary T cells. This approach might also be helpful for other T cell therapy products that need delivery of complicated platform via large payload lentiviral vectors.


Assuntos
Vetores Genéticos , Lentivirus , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Lentivirus/genética , Proteínas Serina-Treonina Quinases , Pirimidinas , Tiofenos , Transdução Genética
20.
J Transl Med ; 18(1): 192, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393282

RESUMO

BACKGROUND: Most mutations in melanoma affect one critical amino acid on BRAF gene, resulting in the V600E substitution. Patient management is often based on the use of specific inhibitors targeting this mutation. METHODS: DNA and RNA mutation status was assessed in 15 melanoma cell lines by Sanger sequencing and RNA-seq. We tested the cell lines responsiveness to BRAF inhibitors (vemurafenib and PLX4720, BRAF-specific and sorafenib, BRAF non-specific). Cell proliferation was assessed by MTT colorimetric assay. BRAF V600E RNA expression was assessed by qPCR. Expression level of phosphorylated-ERK protein was assessed by Western Blotting as marker of BRAF activation. RESULTS: Three cell lines were discordant in the mutation detection (BRAF V600E at DNA level/Sanger sequencing and BRAF WT on RNA-seq). We initially postulated that those cell lines may express only the WT allele at the RNA level although mutated at the DNA level. A more careful analysis showed that they express low level of BRAF RNA and the expression may be in favor of the WT allele. We tested whether the discordant cell lines responded differently to BRAF-specific inhibitors. Their proliferation rate decreased after treatment with vemurafenib and PLX4720 but was not affected by sorafenib, suggesting a BRAF V600E biological behavior. Yet, responsiveness to the BRAF specific inhibitors was lower as compared to the control. Western Blot analysis revealed a decreased expression of p-ERK protein in the BRAF V600E control cell line and in the discordant cell lines upon treatment with BRAF-specific inhibitors. The discordant cell lines showed a lower responsiveness to BRAF inhibitors when compared to the BRAF V600E control cell line. The results obtained from the inhibition experiment and molecular analyses were also confirmed in three additional cell lines. CONCLUSION: Cell lines carrying V600E mutation at the DNA level may respond differently to BRAF targeted treatment potentially due to a lower V600E RNA expression.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA