Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 14(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407185

RESUMO

There is an urgent need for accurate, scalable and cost-efficient models of the tumor microenvironment. Here, we detail how to fabricate and use the metabolic microenvironment chamber (MEMIC) - a 3D-printed ex vivo model of intratumoral heterogeneity. A major driver of the cellular and molecular diversity in tumors is accessibility to the blood stream. Whereas perivascular tumor cells have direct access to oxygen and nutrients, cells further from the vasculature must survive under progressively more ischemic environments. The MEMIC simulates this differential access to nutrients, allow co-culturing any number of cell types, and it is optimized for live imaging and other microscopy-based analyses. Owing to a modular design and full experimental control, the MEMIC provides insights into the tumor microenvironment that would be difficult to obtain via other methods. As proof of principle, we show that cells sense gradual changes in metabolite concentration leading to predictable molecular and cellular spatial patterns. We propose the MEMIC as a complement to standard in vitro and in vivo experiments, diversifying the tools available to accurately model, perturb and monitor the tumor microenvironment.


Assuntos
Neoplasias , Microambiente Tumoral , Técnicas de Cocultura , Humanos , Neoplasias/patologia
2.
Nature ; 573(7775): 595-599, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534224

RESUMO

The tumour suppressor TP53 is mutated in the majority of human cancers, and in over 70% of pancreatic ductal adenocarcinoma (PDAC)1,2. Wild-type p53 accumulates in response to cellular stress, and regulates gene expression to alter cell fate and prevent tumour development2. Wild-type p53 is also known to modulate cellular metabolic pathways3, although p53-dependent metabolic alterations that constrain cancer progression remain poorly understood. Here we find that p53 remodels cancer-cell metabolism to enforce changes in chromatin and gene expression that favour a premalignant cell fate. Restoring p53 function in cancer cells derived from KRAS-mutant mouse models of PDAC leads to the accumulation of α-ketoglutarate (αKG, also known as 2-oxoglutarate), a metabolite that also serves as an obligate substrate for a subset of chromatin-modifying enzymes. p53 induces transcriptional programs that are characteristic of premalignant differentiation, and this effect can be partially recapitulated by the addition of cell-permeable αKG. Increased levels of the αKG-dependent chromatin modification 5-hydroxymethylcytosine (5hmC) accompany the tumour-cell differentiation that is triggered by p53, whereas decreased 5hmC characterizes the transition from premalignant to de-differentiated malignant lesions that is associated with mutations in Trp53. Enforcing the accumulation of αKG in p53-deficient PDAC cells through the inhibition of oxoglutarate dehydrogenase-an enzyme of the tricarboxylic acid cycle-specifically results in increased 5hmC, tumour-cell differentiation and decreased tumour-cell fitness. Conversely, increasing the intracellular levels of succinate (a competitive inhibitor of αKG-dependent dioxygenases) blunts p53-driven tumour suppression. These data suggest that αKG is an effector of p53-mediated tumour suppression, and that the accumulation of αKG in p53-deficient tumours can drive tumour-cell differentiation and antagonize malignant progression.


Assuntos
Carcinoma Ductal Pancreático , Diferenciação Celular/genética , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/fisiopatologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Ácidos Cetoglutáricos/farmacologia , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatologia , Ligação Proteica , Ácido Succínico/metabolismo , Ativação Transcricional
3.
ACS Synth Biol ; 3(12): 932-4, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408994

RESUMO

The emergence of extremely drug resistant Mycobacterium tuberculosis necessitates new strategies to combat the pathogen. Engineered bacteria may serve as vectors to deliver proteins to human cells, including mycobacteria-infected macrophages. In this work, we target Mycobacterium smegmatis, a nonpathogenic tuberculosis model, with E. coli modified to express trehalose dimycolate hydrolase (TDMH), a membrane-lysing serine esterase. We show that TDMH-expressing E. coli are capable of lysing mycobacteria in vitro and at low pH. Vectorized E. coli producing TDMH were found suppress the proliferation of mycobacteria in infected macrophages.


Assuntos
Bioengenharia/métodos , Escherichia coli/metabolismo , Esterases/genética , Vetores Genéticos/genética , Mycobacterium smegmatis/metabolismo , Células Cultivadas , Escherichia coli/genética , Esterases/metabolismo , Vetores Genéticos/metabolismo , Humanos , Macrófagos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA