Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075880

RESUMO

Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins.IMPORTANCEToxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Toxoplasma/patogenicidade , Vacúolos/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Células Cultivadas , Ciclina E/genética , Ciclina E/metabolismo , Citosol/metabolismo , Humanos , Imunoprecipitação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
mBio ; 7(1): e02231-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838724

RESUMO

UNLABELLED: The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc-GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE: Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Fatores de Virulência/metabolismo , Animais , Deleção de Genes , Macrófagos/parasitologia , Camundongos , Proteínas de Protozoários/genética , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Fatores de Virulência/genética
3.
Infect Immun ; 82(6): 2595-605, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24711568

RESUMO

The obligate intracellular parasite Toxoplasma gondii is able to infect a broad range of hosts and cell types due, in part, to the diverse arsenal of effectors it secretes into the host cell. Here, using genetic crosses between type II and type III Toxoplasma strains and quantitative trait locus (QTL) mapping of the changes they induce in macrophage gene expression, we identify a novel dense granule protein, GRA25. Encoded on chromosome IX, GRA25 is a phosphoprotein that is secreted outside the parasites and is found within the parasitophorous vacuole. In vitro experiments with a type II Δgra25 strain showed that macrophages infected with this strain secrete lower levels of CCL2 and CXCL1 than those infected with the wild-type or complemented control parasites. In vivo experiments showed that mice infected with a type II Δgra25 strain are able to survive an otherwise lethal dose of Toxoplasma tachyzoites and that complementation of the mutant with an ectopic copy of GRA25 largely rescues this phenotype. Interestingly, the type II and type III versions of GRA25 differ in endogenous expression levels; however, both are able to promote parasite expansion in vivo when expressed in a type II Δgra25 strain. These data establish GRA25 as a novel virulence factor and immune modulator.


Assuntos
Imunidade Inata/fisiologia , Proteínas de Protozoários/fisiologia , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Fatores de Virulência/fisiologia , Animais , Western Blotting , Células Cultivadas , Mapeamento Cromossômico , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunidade Inata/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Locos de Características Quantitativas , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA