Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117528, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31718965

RESUMO

DNA stands as the primary purpose of many anticancer drugs and according to the performed research on this field, some certain changes contain crucial functionalities in the regulated transcription of DNA. Therefore, the interaction between anticancer drugs and DNA play an important role in understanding their function and also provide a better groundwork for producing more efficient and newer drugs. Here, the interaction between Docetaxel (DO) and calf thymus DNA (ct DNA), in the presence and absence of Anastrozole (AN), has been examined through the usage of different methods that include isothermal titration calorimetry, multi-spectroscopic, viscometry, and molecular docking techniques. Interaction studies have been performed by preparing different molar ratios of DO with the constant ct DNA and AN concentration at pH = 6.8. The binding constants have been calculated to be 7.93 × 104 M-1 and 6.27 × 104 M-1, which indicate the strong binding of DO with ct DNA double helix in the absence and presence of AN, respectively. Thermodynamic parameters, which were obtained from fluorescence spectroscopy and isothermal titration calorimetry, have suggested that the binding of DO and AN to ct DNA as binary and ternary systems have been mainly driven by the electrostatic interactions. The relative viscosity of ct DNA has increased upon the addition of DO and AN, which confirms the interaction mode. A competitive binding study has reported that the enhanced emission intensity of ethidium bromide (EB) and acridine orange (AO), in the presence of ct DNA, have been quenched through the addition of DO and Anastrozole as binary and ternary systems. As it is indicated by these findings, DO is capable of displacing EB and AO from their binding site in ct DNA; hence, it can be concluded that DO and AN are able to intercalate into the base pairs of ct DNA in binary and ternary systems. Molecular docking studies have corroborated the mentioned experimental results.


Assuntos
Anastrozol/metabolismo , Simulação por Computador , DNA/metabolismo , Docetaxel/metabolismo , Anastrozol/química , Ligação Competitiva , Calorimetria , DNA/química , Docetaxel/química , Cinética , Modelos Moleculares , Desnaturação de Ácido Nucleico , Concentração Osmolar , Espalhamento de Radiação , Espectrometria de Fluorescência , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA