Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137024

RESUMO

Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.


Assuntos
Ácidos e Sais Biliares , Colite , Modelos Animais de Doenças , Hepatócitos , Camundongos Knockout , Fator de Transcrição STAT3 , Fator de Transcrição RelA , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Colite/induzido quimicamente , Colite/metabolismo , Colite/genética , Colite/patologia , Hepatócitos/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Camundongos , Ácidos e Sais Biliares/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL
2.
Indian J Gastroenterol ; 43(1): 103-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374283

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory gut disorders, majorly classified as ulcerative colitis and Crohn's disease. The complex, multifactorial etiopathogenesis of IBD involves genetic predisposition, environmental cues, aberrant mucosal immune response and a disturbed gut microbiota. Epidemiological trends, studies in gnotobiotic mice models and genome-wide association studies, identifying genes involved in microbial handling, together mount evidence in support of the gut microbiota playing a pivotal role in IBD pathogenesis. Both Crohn's disease and ulcerative colitis are characterized by severe dysbiosis of the gut microbiome, marked by an expansion of detrimental taxa and concomitant depletion of beneficial members. IBD is characterized by reduction in abundances of bacterial genera involved in production of short-chain fatty acids, bio-transformations of bile acids and synthesis of indole-based tryptophan compounds such as Faecalibacterium, Ruminococcus, Coprococcus, Dorea, Parabacteroides, Eubacterium, Oscillibacter and Prevotella and elevation in members of phyla Proteobacteria and Actinobacteria. This imbalance not only results in exaggerated immune signaling towards the microbial antigens, but also results in an altered metabolomic milieu that triggers additional inflammatory cascades. The present review provides insights into the bacterial dysbiosis observed across different intestinal sites and their metabolomic imprints participating in IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Animais , Camundongos , Doença de Crohn/microbiologia , Disbiose/microbiologia , Estudo de Associação Genômica Ampla , Bactérias
3.
Inflamm Bowel Dis ; 30(4): 641-650, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37950921

RESUMO

BACKGROUND: Exclusive enteral nutrition (EEN) supplementation of the standard of care (SOC) augments steroid responsiveness in patients with acute severe ulcerative colitis (ASUC). EEN is known to alter gut microbial composition. The present study investigates EEN-driven gut microbial alterations in patients with ASUC and examines their correlations with clinical parameters. METHODS: Stool samples from patients with ASUC (n = 44) who received either EEN-supplemented SOC (EEN group; n = 20) or SOC alone (SOC group; n = 24) for 7 days were collected at baseline (day 0) and postintervention (day 7). Microbiome analysis was carried out using 16S ribosomal RNA gene sequencing followed by data processing using QIIME2 and R packages. RESULTS: Seven-day EEN-conjugated corticosteroid therapy in patients with ASUC enhanced the abundances of beneficial bacterial genera Faecalibacterium and Veillonella and reduced the abundance of Sphingomonas (generalized linear model fitted with Lasso regularization with robustness of 100%), while no such improvements in gut microbiota were observed in the SOC group. The EEN-associated taxa correlated with the patient's clinical parameters (serum albumin and C-reactive protein levels). Unlike the SOC group, which retained its preintervention core microbiota, EEN contributed Faecalibacterium prausnitzii, a beneficial gut bacterial taxon, to the gut microbial core. EEN responders showed enhancement of Ligilactobacillus and Veillonella and reduction in Prevotella and Granulicatella. Analysis of baseline gut microbiota showed relative enhancement of certain microbial genera being associated with corticosteroid response and baseline clinical parameters and that this signature could conceivably be used as a predictive tool. CONCLUSIONS: Augmentation of clinical response by EEN-conjugated corticosteroid therapy is accompanied by beneficial gut microbial changes in patients with ASUC.


Exclusive enteral nutrition­supplemented corticosteroid therapy in acute severe ulcerative colitis (ASUC) is accompanied by the enrichment of beneficial gut microbial genera, which correlate negatively with the disease activity scores and objective inflammatory markers in ASUC. The baseline gut microbiota in ASUC associates with and may predict corticosteroid response.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Humanos , Doença de Crohn/terapia , Nutrição Enteral , Colite Ulcerativa/tratamento farmacológico , Bactérias , Corticosteroides/uso terapêutico , Indução de Remissão
4.
PLoS One ; 16(8): e0256098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407136

RESUMO

BACKGROUND AND OBJECTIVES: Crohn's disease (CD) and Intestinal tuberculosis (ITB) are chronic inflammatory ulcero-constrictive intestinal diseases with similar phenotype. Although both are disease models of chronic inflammation and their clinical presentations, imaging, histological and endoscopic findings are very similar, yet their etiologies are diverse. Hence, we aimed to look at differences in the prevalence of pathobionts like adherent-invasive Escherichia coli (AIEC), Listeria monocytogenes, Campylobacter jejuni and Yersinia enterocolitica in CD and ITB as well as their associations with host-associated genetic polymorphisms in genes majorly involved in pathways of microbial handling and immune responses. METHODS: The study cohort included 142 subjects (69 patients with CD, 32 with ITB and 41 controls). RT- PCR amplification was used to detect the presence of AIEC, L. monocytogenes, C. jejuni, and Y. enterocolitica DNA in colonic mucosal biopsies. Additionally, we tested three SNPs in IRGM (rs13361189, rs10065172, and rs4958847), one SNP in ATG16L1 (rs2241880) and one SNP in TNFRSF1A (rs4149570) by real-time PCR with SYBR green from peripheral blood samples in this cohort. RESULTS: In patients with CD, AIEC was most frequently present (16/ 69, 23.19%) followed by L. monocytogenes (14/69, 20.29%), C. jejuni (9/69, 13.04%), and Y. enterocolitica (7/69, 10.14%). Among them, L. monocytogenes and Y. enterocolitica were significantly associated with CD (p = 0.02). In addition, we identified all the three SNPs in IRGM (rs13361189, rs10065172, and rs4958847), one SNP in ATG16L1 (rs2241880) and TNFRSF1A (rs4149570) with a significant difference in frequency in patients with CD compared with ITB and controls (p<0.05). CONCLUSION: Higher prevalence of host gene polymorphisms, as well as the presence of pathobionts, was seen in the colonic mucosa of patients with CD as compared to ITB, although both are disease models of chronic inflammation.


Assuntos
Bactérias/patogenicidade , Doença de Crohn/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/microbiologia , Tuberculose Gastrointestinal/genética , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Estudos de Coortes , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Polimorfismo de Nucleotídeo Único , Prevalência , Tuberculose Gastrointestinal/microbiologia , Tuberculose Gastrointestinal/patologia
5.
Eur J Med Chem ; 174: 66-75, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029945

RESUMO

Two Zn(II) nitro porphyrin derivatives bearing combinations of meso-4-nitrophenyl and meso-4-methylpyridinium moieties and their free-base precursors were synthesized through one-pot microwave process, purified and characterized. The biological activity of these nitroporphyrins was assessed under both photodynamic and non-photodynamic conditions to correlate their structure-activity relationship (SAR). Unlike, the free-base precursors, Zn(II) complexes of these nitroporphyrins displayed nearly complete inhibition in the entry of lentiviruses such as HIV-1 and SIVmac under non-photodynamic conditions. In addition, the Zn(II) complexes also exhibited a higher in vitro photodynamic activity towards human lung cancer cell-line A549 than their free-base precursors. Our results strongly suggest that incorporation of Zn(II) has improved the antiviral and anticancer properties of the nitroporphyrins. To the best of our knowledge, this is the first report demonstrating the dual activity of nitroporphyrin-zinc complexes as antiviral and anti-cancer, which will aid in their development as therapeutics in clinics.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Fusão de HIV/farmacologia , Metaloporfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Zinco/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fluorescência , Células HEK293 , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/efeitos da radiação , Inibidores da Fusão de HIV/toxicidade , HIV-1/efeitos dos fármacos , Humanos , Luz , Metaloporfirinas/síntese química , Metaloporfirinas/efeitos da radiação , Metaloporfirinas/toxicidade , Estrutura Molecular , Nitrobenzenos/síntese química , Nitrobenzenos/farmacologia , Nitrobenzenos/efeitos da radiação , Nitrobenzenos/toxicidade , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA