Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359945

RESUMO

The ovine critical-sized defect model provides a robust preclinical model for testing tissue-engineered constructs for use in the treatment of non-union bone fractures and severe trauma. A critical question in cell-based therapies is understanding the optimal therapeutic cell dose. Key to defining the dose and ensuring successful outcomes is understanding the fate of implanted cells, e.g., viability, bio-distribution and exogenous infiltration post-implantation. This study evaluates such parameters in an ovine critical-sized defect model 2 and 7 days post-implantation. The fate of cell dose and behaviour post-implantation when combined with nanomedicine approaches for multi-model tracking and remote control using external magnetic fields is also addressed. Autologous STRO-4 selected mesenchymal stromal cells (MSCs) were labelled with a fluorescent lipophilic dye (CM-Dil), functionalised magnetic nanoparticles (MNPs) and delivered to the site within a naturally derived bone extracellular matrix (ECM) gel. Encapsulated cells were implanted within a critical-sized defect in an ovine medial femoral condyle and exposed to dynamic gradients of external magnetic fields for 1 h per day. Sheep were sacrificed at 2 and 7 days post-initial surgery where ECM was harvested. STRO-4-positive (STRO-4+) stromal cells expressed osteocalcin and survived within the harvested gels at day 2 and day 7 with a 50% loss at day 2 and a further 45% loss at 7 days. CD45-positive leucocytes were also observed in addition to endogenous stromal cells. No elevation in serum C-reactive protein (CRP) or non-haem iron levels was observed following implantation in groups containing MNPs with or without magnetic field gradients. The current study demonstrates how numbers of therapeutic cells reduce substantially after implantation in the repair site. Cell death is accompanied by enhanced leucocyte invasion, but not by inflammatory blood marker levels. Crucially, a proportion of implanted STRO-4+ stromal cells expressed osteocalcin, which is indicative of osteogenic differentiation. Furthermore, MNP labelling did not alter cell number or result in a further deleterious impact on stromal cells following implantation.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Animais , Osso e Ossos/citologia , Ovinos , Células Estromais/citologia
2.
Sci Rep ; 10(1): 11171, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32612189

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 8451, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439838

RESUMO

Multipotent Mesenchymal Stem/Stromal Cells (MSCs) are widely used in cellular therapy for joint repair. However, the use of MSC therapies is complicated by a lack of understanding of the behaviour of cells and repair within the joint. Current methods of MSC tracking include labelling the cells with Super Paramagnetic Iron Oxide nanoparticles (SPIOs). However, standard acquisition sequences (T2 and T2*) give poor anatomical definition in the presence of SPIOs. To avoid anatomical compromise in the presence of SPIOs, we have investigated the use of Ultra-short Echo Time (UTE) MRI, using a 3D cones acquisition trajectory. This method was used to track SPIO labelled MSC injected into joints containing osteochondral defects in experimental sheep. This study demonstrates that multiple echo times from UTE with 3 T MRI can provide excellent anatomical detail of osteochondral defects and demonstrate similar features to histology. This work also monitors the location of SPIO-labelled cells for regenerative medicine of the knee with MRI, histology, and Prussian blue staining. With these methods, we show that the SPIOs do not hone to the site of defect but instead aggregate in the location of injection, which suggests that any repair mechanism with this disease model must trigger a secondary process.


Assuntos
Ferro/química , Traumatismos do Joelho/veterinária , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Doenças dos Ovinos/terapia , Animais , Modelos Animais de Doenças , Feminino , Traumatismos do Joelho/patologia , Ovinos
4.
Stem Cell Res Ther ; 10(1): 25, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635066

RESUMO

BACKGROUND: Osteochondral injuries represent a significant clinical problem requiring novel cell-based therapies to restore function of the damaged joint with the use of mesenchymal stromal cells (MSCs) leading research efforts. Pre-clinical studies are fundamental in translating such therapies; however, technologies to minimally invasively assess in vivo cell fate are currently limited. We investigate the potential of a MRI- (magnetic resonance imaging) and superparamagnetic iron oxide nanoparticle (SPION)-based technique to monitor cellular bio-distribution in an ovine osteochondral model of acute and chronic injuries. METHODS: MSCs were isolated, expanded and labelled with Nanomag, a 250-nm SPION, and using a novel cell-penetrating technique, glycosaminoglycan-binding enhanced transduction (GET). MRI visibility thresholds, cellular toxicity and differentiation potential post-labelling were assessed in vitro. A single osteochondral defect was created in the medial femoral condyle in the left knee joint of each sheep with the contralateral joint serving as the control. Cells, either GET-Nanomag labelled or unlabelled, were delivered 1 week or 4.5 weeks later. Sheep were sacrificed 7 days post implantation and immediately MR imaged using a 0.2-T MRI scanner and validated on a 3-T MRI scanner prior to histological evaluation. RESULTS: MRI data demonstrated a significant increase in MRI contrast as a result of GET-Nanomag labelling whilst cell viability, proliferation and differentiation capabilities were not affected. MRI results revealed evidence of implanted cells within the synovial joint of the injured leg of the chronic model only with no signs of cell localisation to the defect site in either model. This was validated histologically determining the location of implanted cells in the synovium. Evidence of engulfment of Nanomag-labelled cells by leukocytes is observed in the injured legs of the chronic model only. Finally, serum c-reactive protein (CRP) levels were measured by ELISA with no obvious increase in CRP levels observed as a result of P21-8R:Nanomag delivery. CONCLUSION: This study has the potential to be a powerful translational tool with great implications in the clinical translation of stem cell-based therapies. Further, we have demonstrated the ability to obtain information linked to key biological events occurring post implantation, essential in designing therapies and selecting pre-clinical models.


Assuntos
Rastreamento de Células , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/farmacologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiopatologia , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/efeitos dos fármacos , Ovinos , Membrana Sinovial/citologia , Membrana Sinovial/transplante
5.
J Tissue Eng Regen Med ; 11(8): 2333-2348, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151571

RESUMO

Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica-coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.


Assuntos
Rastreamento de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos , Materiais Revestidos Biocompatíveis , Campos Magnéticos , Células-Tronco Mesenquimais , Dióxido de Silício , Coloração e Rotulagem/métodos , Antígenos de Diferenciação/biossíntese , Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia
6.
Stem Cells Int ; 2017: 2905104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29434641

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have a therapeutic potential for the treatment of osteoarthritic (OA) joint pathology and pain. The aims of this study were to determine the influence of a passage number on the effects of MSCs on pain behaviour and cartilage and bone features in a rodent model of OA. METHODS: Rats underwent either medial meniscal transection (MNX) or sham surgery under anaesthesia. Rats received intra-articular injection of either 1.5 × 106 late passage MSCs labelled with 10 µg/ml SiMAG, 1.5 × 106 late passage mesenchymal stem cells, the steroid Kenalog (200 µg/20 µL), 1.5 × 106 early passage MSCs, or serum-free media (SFM). Sham-operated rats received intra-articular injection of SFM. Pain behaviour was quantified until day 42 postmodel induction. Magnetic resonance imaging (MRI) was used to localise the labelled cells within the knee joint. RESULTS: Late passage MSCs and Kenalog attenuated established pain behaviour in MNX rats, but did not alter MNX-induced joint pathology at the end of the study period. Early passage MSCs exacerbated MNX-induced pain behaviour for up to one week postinjection and did not alter joint pathology. CONCLUSION: Our data demonstrate for the first time the role of a passage number in influencing the therapeutic effects of MSCs in a model of OA pain.

7.
Stem Cell Res Ther ; 4(5): 126, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24406201

RESUMO

INTRODUCTION: The application of mesenchymal stem cells (MSCs) in treating rheumatoid arthritis (RA) has been made possible by the immunosuppressive and differentiation abilities of these cells. A non-invasive means of assessing cell integration and bio-distribution is fundamental in evaluating the risks and success of this therapy, thereby enabling clinical translation. This paper defines the use of superparamagnetic iron oxide nanoparticles (SPIONs) in conjunction with magnetic resonance imaging (MRI) to image and track MSCs in vivo within a murine model of RA. METHODS: Murine MSCs (mMSCs) were isolated, expanded and labelled with SiMAG, a commercially available particle. In vitro MRI visibility thresholds were investigated by labelling mMSCs with SiMAG with concentrations ranging from 0 to 10 µg/ml and resuspending varying cell doses (10930 to 5 × 10950 cells) in 2 mg/ml collagen prior to MR-imaging. Similarly, in vivo detection thresholds were identified by implanting 3 × 10950 mMSCs labelled with 0 to 10 µg/ml SiMAG within the synovial cavity of a mouse and MR-imaging. Upon RA induction, 300,000 mMSCs labelled with SiMAG (10 µg/ml) were implanted via intra-articular injection and joint swelling monitored as an indication of RA development over seven days. Furthermore, the effect of SiMAG on cell viability, proliferation and differentiation was investigated. RESULTS: A minimum particle concentration of 1 µg/ml (300,000 cells) and cell dose of 100,000 cells (5 and 10 µg/ml) were identified as the in vitro MRI detection threshold. Cell viability, proliferation and differentiation capabilities were not affected, with labelled populations undergoing successful differentiation down osteogenic and adipogenic lineages. A significant decrease (P < 0.01) in joint swelling was measured in groups containing SiMAG-labelled and unlabelled mMSCs implying that the presence of SPIONs does not affect the immunomodulating properties of the cells. In vivo MRI scans demonstrated good contrast and the identification of SiMAG-labelled populations within the synovial joint up to 7 days post implantation. This was further confirmed using histological analysis. CONCLUSIONS: We have been able to monitor and track the migration of stem cell populations within the rheumatic joint in a non-invasive manner. This manuscript goes further to highlight the key characteristics (biocompatible and the ability to create significant contrast at realistic doses within a clinical relevant system) demonstrated by SiMAG that should be incorporated into the design of a new clinically approved tracking agent.


Assuntos
Artrite Reumatoide/diagnóstico por imagem , Dextranos/química , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Imagem Corporal Total , Animais , Artrite Reumatoide/patologia , Artrite Reumatoide/cirurgia , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Corantes Fluorescentes/química , Imageamento por Ressonância Magnética , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA