Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 39(3): 1309-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380363

RESUMO

PURPOSE: This study investigates the feasibility of T(2)∗ to be a diagnostic indicator of early breast cancer in a mouse model. T(2)∗ is sensitive to susceptibility effects due to local inhomogeneity of the magnetic field, e.g., caused by hemosiderin or deoxyhemoglobin. In these mouse models, unlike in patients, the characteristics of single mammary ducts containing pure intraductal cancer can be evaluated. METHODS: The C3(1)SV40Tag mouse model of breast cancer (n = 11) and normal FVB∕N mice (n = 6) were used to measure T(2)∗ of normal mammary gland tissue, intraepithelial neoplasia, invasive cancers, mammary lymph nodes, and muscle. MRI experiments were performed on a 9.4T animal scanner. High resolution (117 microns) axial 2D multislice gradient echo images with fat suppression were acquired first to identify inguinal mammary gland. Then a multislice multigradient echo pulse sequence with and without fat suppression were performed over the inguinal mammary gland. The modulus of a complex double exponential decay detected by the multigradient echo sequence was used to fit the absolute proton free induction decay averaged over a region of interest to determine the T(2)∗ of water and fat signals. RESULTS: The measured T(2)∗ values of tumor and muscle are similar (∼15 ms), and almost twice that of lymph nodes (∼8 ms). There was a statistically significant difference (p < 0.03) between T(2)∗ in normal mammary tissue (13.7 ± 2.9 ms) and intraductal cancers (11 ± 2.0 ms) when a fat suppression pulse was applied. CONCLUSIONS: These are the first reported T(2)∗ measurements from single mammary ducts. The results demonstrated that T(2)∗ measurements may have utility for identifying early pre-invasive cancers in mouse models. This may inspire similar research for patients using T(2)∗ for diagnostic imaging of early breast cancer.


Assuntos
Carcinoma Intraductal não Infiltrante/diagnóstico , Imageamento por Ressonância Magnética/métodos , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/patologia , Animais , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Glândulas Mamárias Animais/patologia , Camundongos , Invasividade Neoplásica , Fatores de Tempo
2.
Breast Cancer Res ; 11(5): R65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19732414

RESUMO

INTRODUCTION: Because of the small size of in situ mammary cancers in mouse models, high-resolution imaging techniques are required to effectively observe how lesions develop, grow and progress over time. The purpose of this study was to use magnetic resonance (MR) imaging to track in vivo the transition from in situ neoplasia to invasive cancer in a transgenic mouse model of human cancer. METHODS: MR images of 12 female C3(1) SV40 Tag mice that develop mammary intraepithelial neoplasia (MIN) were obtained. MIN is believed to be similar to human ductal carcinoma in situ (DCIS) and is considered a precursor of invasive tumors. Images were serially obtained from 10-21 weeks of age at 2-3 week intervals. MIN lesions were identified based on their morphology on MR images. Lesions were followed over time and several lesion features were measured including volume, growth rate and morphology. For those MIN lesions that progressed to invasive cancer the progression time was measured. RESULTS: Overall, 21 MIN lesions were initially detected at an average initial volume of 0.3 +/- 0.2 mm3 with an average growth rate of -0.15 +/- 0.66 week-1. Even though all mice were inbred to express the SV40 Tag transgene in the mammary epithelium and expected to develop invasive carcinoma, the individual MIN lesions took vastly different progression paths: (i) 9 lesions progressed to invasive tumors with an average progression time of 4.6 +/- 1.9 weeks; (ii) 2 lesions regressed, i.e., were not detected on future images; and (iii) 5 were stable for over 8 weeks, and were demonstrated by a statistical model to represent indolent disease. CONCLUSIONS: To our knowledge, the results reported here are the first measurements of the timescale and characteristics of progression from in situ neoplasia to invasive carcinoma and provide image-based evidence that DCIS may be a non-obligate precursor lesion with highly variable outcomes. In addition, this study represents a first step towards developing methods of image acquisition for identifying radiological characteristics that might predict which in situ neoplasias will become invasive cancers and which are unlikely to progress.


Assuntos
Neoplasias das Glândulas Endócrinas/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/patologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Progressão da Doença , Feminino , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA