Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 235: 113791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335769

RESUMO

Magnetic nanoparticles (MNPs) modified with tannic acid (TA) have shown remarkable success as an antioxidant and antimicrobial therapeutic agent. Herein, we report a synthetic procedure for the preparation of silica-coated MNPs modified with N-acetylcysteine-modified chitosan and TA. This was achieved by free-radical grafting of NAC onto chitosan (CS), a layer-by-layer technique for modifying negatively charged MNP@SiO2 nanoparticles with positively charged CS-NAC, and crosslinking CS with TA. The antioxidant and metabolic effects of MNP@SiO2-CS-NAC and MNP@SiO2-CS-NAC-TA nanoparticles were tested in a model of prediabetic rats with hepatic steatosis, the hereditary hypertriglyceridemic rats (HHTg). The particles exhibited significant antioxidant properties in the liver, increasing the activity of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx), decreasing the concentration of the lipoperoxidation product malondialdehyde (MDA), and improving the antioxidant status determined as the ratio of reduced to oxidized glutathione; in particular, TA increased some antioxidant parameters. MNPs carrying antioxidants such as NAC and TA could thus represent a promising therapeutic agent for the treatment of various diseases accompanied by increased oxidative stress.


Assuntos
Quitosana , Nanopartículas de Magnetita , Polifenóis , Estado Pré-Diabético , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Acetilcisteína/farmacologia , Quitosana/farmacologia , Estado Pré-Diabético/metabolismo , Dióxido de Silício/farmacologia , Glutationa/metabolismo , Ratos Wistar , Estresse Oxidativo , Fígado , Superóxido Dismutase/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269970

RESUMO

BACKGROUND: If menopause is really independent risk factor for cardiovascular disease is still under debate. We studied if ovariectomy in the model of insulin resistance causes cardiovascular changes, to what extent are these changes reversible by estradiol substitution and if they are accompanied by changes in other organs and tissues. METHODS: Hereditary hypertriglyceridemic female rats were divided into three groups: ovariectomized at 8th week (n = 6), ovariectomized with 17-ß estradiol substitution (n = 6), and the sham group (n = 5). The strain of abdominal aorta measured by ultrasound, expression of vascular genes, weight and content of myocardium and also non-cardiac parameters were analyzed. RESULTS: After ovariectomy, the strain of abdominal aorta, expression of nitric oxide synthase in abdominal aorta, relative weight of myocardium and of the left ventricle and circulating interleukin-6 decreased; these changes were reversed by estradiol substitution. Interestingly, the content of triglycerides in myocardium did not change after ovariectomy, but significantly increased after estradiol substitution while adiposity index did not change after ovariectomy, but significantly decreased after estradiol substitution. CONCLUSION: Vascular and cardiac parameters under study differed in their response to ovariectomy and estradiol substitution. This indicates different effects of ovariectomy and estradiol on different cardiovascular but also extracardiac structures.


Assuntos
Estradiol , Resistência à Insulina , Animais , Feminino , Coração , Humanos , Resistência à Insulina/fisiologia , Menopausa/metabolismo , Ovariectomia/efeitos adversos , Ratos
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638943

RESUMO

(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.


Assuntos
Tecido Adiposo/metabolismo , Compostos Benzidrílicos/administração & dosagem , Senescência Celular/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Glucosídeos/administração & dosagem , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Hipoglicemiantes/administração & dosagem , Rim/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Células 3T3-L1 , Administração Oral , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Gluconeogênese/genética , Células Hep G2 , Humanos , Resistência à Insulina , Lipogênese/genética , Masculino , Camundongos , Ratos , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
4.
Biomolecules ; 11(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467512

RESUMO

The aim of this study was to evaluate the mutual relationship among perivascular adipose tissue (PVAT) and endogenous and exogenous H2S in vasoactive responses of isolated arteries from adult normotensive (Wistar) rats and hypertriglyceridemic (HTG) rats, which are a nonobese model of metabolic syndrome. In HTG rats, mild hypertension was associated with glucose intolerance, dyslipidemia, increased amount of retroperitoneal fat, increased arterial contractility, and endothelial dysfunction associated with arterial wall injury, which was accompanied by decreased nitric oxide (NO)-synthase activity, increased expression of H2S producing enzyme, and an altered oxidative state. In HTG, endogenous H2S participated in the inhibition of endothelium-dependent vasorelaxation regardless of PVAT presence; on the other hand, aortas with preserved PVAT revealed a stronger anticontractile effect mediated at least partially by H2S. Although we observed a higher vasorelaxation induced by exogenous H2S donor in HTG rats than in Wistar rats, intact PVAT subtilized this effect. We demonstrate that, in HTG rats, endogenous H2S could manifest a dual effect depending on the type of triggered signaling pathway. H2S within the arterial wall contributes to endothelial dysfunction. On the other hand, PVAT of HTG is endowed with compensatory vasoactive mechanisms, which include stronger anti-contractile action of H2S. Nevertheless, the possible negative impact of PVAT during hypertriglyceridemia on the activity of exogenous H2S donors needs to be taken into consideration.


Assuntos
Tecido Adiposo/metabolismo , Síndrome Metabólica/metabolismo , Transdução de Sinais , Animais , Aorta Torácica/fisiopatologia , Cistationina gama-Liase/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Hipertrigliceridemia/metabolismo , Masculino , Síndrome Metabólica/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Norepinefrina/farmacologia , Oxirredução , Ratos Wistar , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA