Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 15(15): 7362-7380, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580837

RESUMO

The loss of skeletal muscle strength mid-life in females is associated with the decline of estrogen. Here, we questioned how estrogen deficiency might impact the overall skeletal muscle phosphoproteome after contraction, as force production induces phosphorylation of several muscle proteins. Phosphoproteomic analyses of the tibialis anterior muscle after contraction in two mouse models of estrogen deficiency, ovariectomy (Ovariectomized (Ovx) vs. Sham) and natural aging-induced ovarian senescence (Older Adult (OA) vs. Young Adult (YA)), identified a total of 2,593 and 3,507 phosphopeptides in Ovx/Sham and OA/YA datasets, respectively. Further analysis of estrogen deficiency-associated proteins and phosphosites identified 66 proteins and 21 phosphosites from both datasets. Of these, 4 estrogen deficiency-associated proteins and 4 estrogen deficiency-associated phosphosites were significant and differentially phosphorylated or regulated, respectively. Comparative analyses between Ovx/Sham and OA/YA using Ingenuity Pathway Analysis (IPA) found parallel patterns of inhibition and activation across IPA-defined canonical signaling pathways and physiological functional analysis, which were similarly observed in downstream GO, KEGG, and Reactome pathway overrepresentation analysis pertaining to muscle structural integrity and contraction, including AMPK and calcium signaling. IPA Upstream regulator analysis identified MAPK1 and PRKACA as candidate kinases and calcineurin as a candidate phosphatase sensitive to estrogen. Our findings highlight key molecular signatures and pathways in contracted muscle suggesting that the similarities identified across both datasets could elucidate molecular mechanisms that may contribute to skeletal muscle strength loss due to estrogen deficiency.


Assuntos
Estrogênios , Músculo Esquelético , Camundongos , Feminino , Animais , Humanos , Músculo Esquelético/metabolismo , Estrogênios/metabolismo , Contração Muscular/fisiologia , Envelhecimento/metabolismo , Proteínas/metabolismo , Ovariectomia
2.
Mol Cancer Res ; 21(8): 836-848, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115197

RESUMO

Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS: These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.


Assuntos
Desmogleína 2 , Neoplasias , Camundongos , Animais , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Caderinas/metabolismo , Obesidade
3.
Clin Proteomics ; 20(1): 14, 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37005570

RESUMO

BACKGROUND: Clinical bronchoalveolar lavage fluid (BALF) samples are rich in biomolecules, including proteins, and useful for molecular studies of lung health and disease. However, mass spectrometry (MS)-based proteomic analysis of BALF is challenged by the dynamic range of protein abundance, and potential for interfering contaminants. A robust, MS-based proteomics compatible sample preparation workflow for BALF samples, including those of small and large volume, would be useful for many researchers. RESULTS: We have developed a workflow that combines high abundance protein depletion, protein trapping, clean-up, and in-situ tryptic digestion, that is compatible with either qualitative or quantitative MS-based proteomic analysis. The workflow includes a value-added collection of endogenous peptides for peptidomic analysis of BALF samples, if desired, as well as amenability to offline semi-preparative or microscale fractionation of complex peptide mixtures prior to LC-MS/MS analysis, for increased depth of analysis. We demonstrate the effectiveness of this workflow on BALF samples collected from COPD patients, including for smaller sample volumes of 1-5 mL that are commonly available from the clinic. We also demonstrate the repeatability of the workflow as an indicator of its utility for quantitative proteomic studies. CONCLUSIONS: Overall, our described workflow consistently provided high quality proteins and tryptic peptides for MS analysis. It should enable researchers to apply MS-based proteomics to a wide-variety of studies focused on BALF clinical specimens.

4.
Nutr Cancer ; 75(3): 1014-1027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36688306

RESUMO

Epidemiologic studies of diabetic patients treated with metformin identified significantly lower incidences of cancer. From this, there is growing interest in the use of metformin to treat and prevent cancer. Studies have investigated chemopreventive mechanisms including alterations in calorie intake, cancer metabolism, and cell signaling. Repurposing the drug is challenging due to its metabolic effects and non-uniform effects on different types of cancer. In our previously published studies, we observed that benzo[a]pyrene treated mice receiving metformin significantly reduced lung adenomas; however, mice had reduced weight gain. In this study, we compared chemoprevention diets with and without metformin to evaluate the effects of diet vs. effects of metformin. We also performed tandem mass spectrometry on mouse serum to assess metabolomic alterations associated with metformin treatment. In metformin cohorts, the rate of weight gain was reduced, but weights did not vary between diets. There was no weight difference between diets without metformin. Interestingly, caloric intake was increased in metformin treated mice. Metabolomic analysis revealed metabolite alterations consistent with metformin treatment. Based on these results, we conclude that previous reductions in lung adenomas may have been occurred from anticancer effects of metformin rather than a potentially toxic effect such as calorie restriction.


Assuntos
Adenoma , Neoplasias Pulmonares , Metformina , Camundongos , Animais , Metformina/farmacologia , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Aumento de Peso , Adenoma/tratamento farmacológico , Adenoma/prevenção & controle
5.
Physiol Genomics ; 54(11): 417-432, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062884

RESUMO

Protein phosphorylation is important in skeletal muscle development, growth, regeneration, and contractile function. Alterations in the skeletal muscle phosphoproteome due to aging have been reported in males; however, studies in females are lacking. We have demonstrated that estrogen deficiency decreases muscle force, which correlates with decreased myosin regulatory light chain phosphorylation. Thus, we questioned whether the decline of estrogen in females that occurs with aging might alter the skeletal muscle phosphoproteome. C57BL/6J female mice (6 mo) were randomly assigned to a sham-operated (Sham) or ovariectomy (Ovx) group to investigate the effects of estrogen deficiency on skeletal muscle protein phosphorylation in a resting, noncontracting condition. After 16 wk of estrogen deficiency, the tibialis anterior muscle was dissected and prepped for label-free nano-liquid chromatography-tandem mass spectrometry phosphoproteomic analysis. We identified 4,780 phosphopeptides in tibialis anterior muscles of ovariectomized (Ovx) and Sham-operated (Sham) control mice. Further analysis revealed 647 differentially regulated phosphopeptides (Benjamini-Hochberg adjusted P value < 0.05 and 1.5-fold change ratio) that corresponded to 130 proteins with 22 proteins differentially phosphorylated (3 unique to Ovx, 2 unique to Sham, 6 upregulated, and 11 downregulated). Differentially phosphorylated proteins associated with the sarcomere, cytoplasm, and metabolic and calcium signaling pathways were identified. Our work provides the first global phosphoproteomic analysis in females and how estrogen deficiency impacts the skeletal muscle phosphoproteome.


Assuntos
Cadeias Leves de Miosina , Fosfopeptídeos , Animais , Feminino , Camundongos , Estrogênios/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Cadeias Leves de Miosina/metabolismo , Cadeias Leves de Miosina/farmacologia , Fosfopeptídeos/metabolismo
6.
Data Brief ; 45: 108591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36164307

RESUMO

The effects of early-life iron deficiency anemia (IDA) extend past the blood and include both short- and long-term adverse effects on many tissues including the brain. Prior to IDA, iron deficiency (ID) can cause similar tissue effects, but a sensitive biomarker of iron-dependent brain health is lacking. To determine serum and CSF biomarkers of ID-induced metabolic dysfunction we performed proteomic and metabolomic analysis of serum and CSF at 4- and 6- months from a nonhuman primate model of infantile IDA. LC/MS/MS analyses identified a total of 227 metabolites and 205 proteins in serum. In CSF, we measured 210 metabolites and 1,560 proteins. Data were either processed from a Q-Exactive (Thermo Scientific, Waltham, MA) through Progenesis QI with accurate mass and retention time comparisons to a proprietary small molecule database and Metlin or with raw files imported directly from a Fusion Orbitrap (Thermo Scientific, Waltham, MA) through Sequest in Proteome Discoverer 2.4.0.305 (Thermo Scientific, Waltham, MA) with peptide matches through the latest Rhesus Macaque HMDB database. Metabolite and protein identifiers, p-values, and q-values were utilized for molecular pathway analysis with Ingenuity Pathways Analysis (IPA). We applied multiway distance weighted discrimination (DWD) to identify a weighted sum of the features (proteins or metabolites) that distinguish ID from IS at 4-months (pre-anemic period) and 6-months of age (anemic).

7.
Sci Rep ; 12(1): 7985, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568699

RESUMO

Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disease caused by a mutation in the ABCD1 gene, producing mutations in the very long chain fatty acid transporter, ALD protein. Cerebral ALD (cALD) is a severe phenotype of ALD with neuroinflammation and neurodegeneration. Elevated levels of Glycoprotein Nonmetastatic Melanoma Protein B (GNMPB) have been recently documented in neurodegenerative diseases such as Alzheimer's disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Our objective was to measure the levels cerebral spinal fluid (CSF) GNMPB in cALD patients to determine if GNMPB could be a potential biomarker in tracking cALD disease progression. CSF GNMPB levels were significantly higher in cALD patients versus controls (2407 ± 1672 pg/mL vs. 639.5 ± 404 pg/mL, p = 0.0009). We found a positive correlation between CSF GNMPB and MRI disease severity score levels (R2 = 0.3225, p < 0.0001) as well as the gadolinium intensity score (p = 0.0204). Boys with more severe neurologic deficits also had higher levels of CSF GNMPB (p < 0.0001). A positive correlation was shown between CSF GNMPB and another biomarker, chitotriosidase (R2 = 0.2512, p = 0.0244). These data show that GNMPB could be a potential biomarker of cALD disease state and further studies should evaluate it as a predictor of the disease progression.


Assuntos
Adrenoleucodistrofia , Melanoma , Glicoproteínas de Membrana , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Glicoproteínas de Membrana/metabolismo , Receptores Fc
8.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R486-R500, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271351

RESUMO

The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Anemia Ferropriva/líquido cefalorraquidiano , Animais , Biomarcadores , Humanos , Ferro , Macaca mulatta , Proteômica
9.
Dev Cell ; 56(15): 2252-2266.e6, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343476

RESUMO

In the failing heart, the cardiac myocyte microtubule network is remodeled, which contributes to cellular contractile failure and patient death. However, the origins of this deleterious cytoskeletal reorganization are unknown. We now find that oxidative stress, a condition characteristic of heart failure, leads to cysteine oxidation of microtubules. Our electron and fluorescence microscopy experiments revealed regions of structural damage within the microtubule lattice that occurred at locations of oxidized tubulin. The incorporation of GTP-tubulin into these damaged, oxidized regions led to stabilized "hot spots" within the microtubule lattice, which suppressed the shortening of dynamic microtubules. Thus, oxidative stress may act inside of cardiac myocytes to facilitate a pathogenic shift from a sparse microtubule network into a dense, aligned network. Our results demonstrate how a disease condition characterized by oxidative stress can trigger a molecular oxidation event, which likely contributes to a toxic cellular-scale transformation of the cardiac myocyte microtubule network.


Assuntos
Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Linhagem Celular , Cisteína/metabolismo , Citoesqueleto/fisiologia , Guanosina Trifosfato/metabolismo , Insuficiência Cardíaca/metabolismo , Microscopia de Fluorescência , Microtúbulos/fisiologia , Miócitos Cardíacos/fisiologia , Oxirredução , Ratos , Tubulina (Proteína)/metabolismo
10.
Sci Rep ; 10(1): 3869, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123248

RESUMO

Neurofibrillary tangles are a pathological hallmark of Alzheimer's disease, and their levels correlate with the severity of cognitive dysfunction in humans. However, experimental evidence suggests that soluble tau species cause cognitive deficits and memory impairment. Our recent study suggests that caspase-2 (Casp2)-catalyzed tau cleavage at aspartate 314 mediates synaptic dysfunction and memory impairment in mouse and cellular models of neurodegenerative disorders. Δtau314, the C-terminally-truncated cleavage products, are soluble and present in human brain. In addition, levels of Δtau314 proteins are elevated in the brain of the cognitively impaired individuals compared to the cognitively normal individuals, indicating a possible role for Δtau314 proteins in cognitive deterioration. Here we show that (1) Δtau314 proteins are present in the inferior temporal gyrus of human brains; (2) Δtau314 proteins are generated from all six tau splicing isoforms, (3) levels of both Casp2 and Δtau314 proteins are elevated in cognitively impaired individuals compared to cognitively normal individuals, and (4) levels of Δtau314 proteins show a modest predictive value for dementia. These findings advance our understanding of the characteristics of Δtau314 proteins and their relevance to cognitive dysfunction and shed light on the contribution of Casp2-mediated Δtau314 production to cognitive deterioration.


Assuntos
Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Lobo Temporal/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Caspase 2/genética , Caspase 2/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Lobo Temporal/patologia , Proteínas tau/genética
11.
Sci Rep ; 9(1): 7858, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133696

RESUMO

Cerebral adrenoleukodystrophy (cALD) is an inflammatory neurodegenerative disease associated with mutation of the ABCD1 gene. Proteomic analysis of cerebral spinal fluid (CSF) from young males with active cALD revealed markers of inflammation including APOE4. APOE4 genotype has been associated with an inferior prognosis following acute and chronic neurologic injury. We assessed APOE4 inheritance among 83 consecutive young males with cALD prior to hematopoietic cell transplant and its association with markers of cerebral disease. The allele frequency of APOE4 was not significantly different from that of the general population at 17%. Young males with cALD that were APOE4 carriers had similar CSF protein and chitotriosidase activity to that of non-carriers. In contrast, APOE4 carriers had an increased burden of cerebral disease involvement as determined by MRI severity score (10.5 vs 7.0 points, p = 0.01), higher gadolinium intensity score (2.0 vs 1.3 points, p = 0.007), inferior neurologic function (neurologic function score 2.4 vs 1.0, p = 0.001), and elevated CSF MMP2 levels compared to that of non-carriers (13168 vs 9472 pg/mL, p = 0.01). These are the first data showing that APOE4 is associated with increased severity of cerebral disease in cALD and suggest it may be a modifier of disease.


Assuntos
Adrenoleucodistrofia/genética , Apolipoproteína E4/genética , Adrenoleucodistrofia/líquido cefalorraquidiano , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/terapia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Criança , Genótipo , Transplante de Células-Tronco Hematopoéticas , Hexosaminidases/líquido cefalorraquidiano , Humanos , Masculino , Prognóstico , Proteômica
12.
J Med Chem ; 59(7): 3499-514, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26986898

RESUMO

Photoaffinity labeling with an epothilone A photoprobe led to the identification of the ß-tubulin peptides TARGSQQY and TSRGSQQY as targets of the photoprobe for polymerized tubulin. These peptides represent residues 274-281 in different ß-tubulin isotypes. Placing the carbene producing 21-diazo/triazolo moiety of the photoprobe in the vicinity of the TARGSQQY peptide in a homology model of TBB3 predicted a binding pose and conformation of the photoprobe that are very similar to the ones reported for 1) the high resolution cocrystal structure of epothilone A with an α,ß-tubulin complex and for 2) a saturation transfer difference NMR and transferred NOESY NMR study of dimeric and polymerized tubulin. Our findings thus provide additional support for these models as physiologically the most relevant among several modes of binding that have been proposed for epothilone A in the taxane pocket of ß-tubulin.


Assuntos
Epotilonas/metabolismo , Sondas Moleculares/química , Neoplasias Ovarianas/metabolismo , Fragmentos de Peptídeos/química , Marcadores de Fotoafinidade/química , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Bovinos , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Epotilonas/química , Feminino , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Neoplasias Ovarianas/química , Polimerização , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
13.
PLoS Pathog ; 11(11): e1005248, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544981

RESUMO

Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations.


Assuntos
Anaplasma phagocytophilum/enzimologia , Ehrlichiose/microbiologia , Ixodes/microbiologia , Metiltransferases/metabolismo , Carrapatos/microbiologia , Animais , Ehrlichiose/genética , Ixodes/imunologia , Metiltransferases/genética , Ativação Transcricional , Regulação para Cima
14.
PLoS One ; 10(3): e0121788, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816339

RESUMO

CD16a and CD16b are IgG Fc receptors expressed by human natural killer (NK) cells and neutrophils, respectively. Both CD16 isoforms undergo a rapid down-regulation in expression by ADAM17-mediated proteolytic cleavage upon cell activation by various stimuli. We examined soluble CD16 released from activated NK cells and neutrophils by mass spectrometric analysis, and identified three separate cleavage sites in close proximity at P1/P1' positions alanine195/valine196, valine196/serine197, and threonine198/isoleucine199, revealing a membrane proximal cleavage region in CD16. Substitution of the serine at position 197 in the middle of the cleavage region for a proline (S197P) effectively blocked CD16a and CD16b cleavage in cell-based assays. We also show that CD16a/S197P was resistant to cleavage when expressed in the human NK cell line NK92 and primary NK cells derived from genetically-engineered human induced pluripotent stem cells. CD16a is a potent activating receptor and despite blocking CD16a shedding, the S197P mutation did not disrupt IgG binding by the receptor or its activation of NK92 cells by antibody-treated tumor cells. Our findings provide further characterization of CD16 cleavage by ADAM17 and they demonstrate that a non-cleavable version of CD16a can be expressed in engineered NK cells.


Assuntos
Proteínas ADAM/metabolismo , Células Matadoras Naturais/metabolismo , Receptores de IgG/química , Serina/metabolismo , Proteína ADAM17 , Substituição de Aminoácidos , Linhagem Celular , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Imunoglobulina G/metabolismo , Células Matadoras Naturais/citologia , Espectrometria de Massas , Proteólise , Receptores de IgG/genética , Receptores de IgG/metabolismo
15.
Mol Microbiol ; 94(3): 537-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155417

RESUMO

Wolbachia pipientis, a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein 'footprint' dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulphurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation.


Assuntos
Proteínas de Bactérias/análise , Proteoma/análise , Wolbachia/crescimento & desenvolvimento , Aedes , Animais , Linhagem Celular , Eletroforese em Gel Bidimensional , Espectrometria de Massas em Tandem
16.
Stem Cells ; 32(10): 2767-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905975

RESUMO

There is accumulating evidence that mesenchymal stem cells (MSCs) have their origin as perivascular cells (PVCs) in vivo, but precisely identifying them has been a challenge, as they have no single definitive marker and are rare. We have developed a fluorescent transgenic vertebrate model in which PVC can be visualized in vivo based upon sdf1 expression in the zebrafish. Prospective isolation and culture of sdf1(DsRed) PVC demonstrated properties consistent with MSC including prototypical cell surface marker expression; mesodermal differentiation into adipogenic, osteogenic, and chondrogenic lineages; and the ability to support hematopoietic cells. Global proteomic studies performed by two-dimensional liquid chromatography and tandem mass spectrometry revealed a high degree of similarity to human MSC (hMSC) and discovery of novel markers (CD99, CD151, and MYOF) that were previously unknown to be expressed by hMSC. Dynamic in vivo imaging during fin regeneration showed that PVC may arise from undifferentiated mesenchyme providing evidence of a PVC-MSC relationship. This is the first model, established in zebrafish, in which MSC can be visualized in vivo and will allow us to better understand their function in a native environment.


Assuntos
Vasos Sanguíneos/citologia , Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mesoderma/citologia , Proteômica , Regeneração , Transgenes
17.
Mol Biosyst ; 10(5): 1094-103, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24577581

RESUMO

Protein prenylation is a post-translational modification required for proper cellular localization and activity of many important eukaryotic proteins. Farnesyltransferase inhibitors (FTIs) have been explored extensively for their antitumor activity. To assist in identifying potentially new and more useful markers for therapeutic applications, we developed a strategy that uses a combination of metabolic labeling and 2D DIGE (differential gel electrophoresis) to discover new prenylated proteins whose cellular levels are influenced by FTIs. In this approach, metabolic labeling of prenylated proteins was first carried out with an alkyne-modified isoprenoid analog, C15Alk, in the presence or absence of the FTI L-744,832. The resulting alkyne-tagged proteins were then labeled with Cy3-N3 and Cy5-N3 and subjected to 2D-DIGE. Multiple spots having altered levels of labeling in presence of the FTI were observed. Mass spectrometric analysis of some of the differentially labeled spots identified several known prenylated proteins, along with HisRS, PACN-3, GNAI-1 and GNAI-2, which are not known to be prenylated. In vitro farnesylation of a C-terminal peptide sequence derived from GNAI-1 and GNAI-2 produced a farnesylated product, suggesting GNAI-1 and GNAI-2 are potential novel farnesylated proteins. These results suggest that this new strategy could be useful for the identification of prenylated proteins whose level of post-translational modification has been modulated by the presence of an FTI. Additionally, this approach, which decreases sample complexity and thereby facilitates analysis, should be applicable to studies of other post-translational modifications as well.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Prenilação de Proteína/efeitos dos fármacos , Coloração e Rotulagem , Eletroforese em Gel Diferencial Bidimensional/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Fracionamento Químico , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Octoxinol , Polietilenoglicóis/farmacologia
18.
Viruses ; 6(2): 727-51, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24531333

RESUMO

Development of a vaccine against congenital infection with human cytomegalovirus (HCMV) is a major public health priority. A potential vaccine target receiving considerable recent attention is the pentameric complex (PC) of HCMV proteins consisting of gL, gH, UL128, UL130, and UL131, since some antibodies against these target proteins are capable of potently neutralizing virus at epithelial and endothelial cell surfaces. Recently, homologous proteins have been described for guinea pig cytomegalovirus (GPCMV), consisting of gH, gL, and the GPCMV proteins GP129, GP131, and GP133. To investigate these proteins as potential vaccine targets, expression of GP129-GP133 transcripts was confirmed by reverse-transcriptase PCR. Mass spectrometry combined with western blot assays demonstrated the presence of GP129, GP131, and GP133 proteins in virus particles. Recombinant proteins corresponding to these PC proteins were generated in baculovirus, and as GST fusion proteins. Recombinant proteins were noted to be immunoreactive with convalescent sera from infected animals, suggesting that these proteins are recognized in the humoral immune response to GPCMV infection. These analyses support the study of PC-based recombinant vaccines in the GPCMV congenital infection model.


Assuntos
Substâncias Macromoleculares/química , Roseolovirus/química , Proteínas Estruturais Virais/análise , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Western Blotting , Cobaias , Espectrometria de Massas , Proteínas Recombinantes/genética , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
19.
Insect Biochem Mol Biol ; 43(3): 272-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23287400

RESUMO

Wolbachia are obligate intracellular bacteria that cause cytoplasmic incompatibility in mosquitoes. In an incompatible cross, eggs of uninfected females fail to hatch when fertilized by sperm from infected males. We used polyacrylamide gel electrophoresis and tandem mass spectrometry to identify Wolbachia proteins in infected mosquito gonads. These included surface proteins with masses of 25 and 18 kDa and the DNA binding protein, HU beta. Using reverse transcriptase polymerase chain reaction, we showed that the HU gene is transcribed in Wolbachia-infected Culex pipiens and Aedes albopictus mosquitoes. We sequenced HU genes from four Wolbachia strains and compared deduced protein sequences with additional homologs from the databases. Among the Rickettsiales, Wolbachia HU has distinct N- and C-terminal basic/acidic amino acid motifs as well as a pair of conserved, cysteine residues.


Assuntos
Aedes/microbiologia , Proteínas de Bactérias/isolamento & purificação , Culex/microbiologia , Proteínas de Ligação a DNA/isolamento & purificação , Wolbachia/química , Aedes/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Culex/química , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Gônadas/química , Masculino , Dados de Sequência Molecular , Família Multigênica , Espectrometria de Massas em Tandem , Wolbachia/genética , Wolbachia/metabolismo
20.
Proc Natl Acad Sci U S A ; 108(1): 260-5, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173221

RESUMO

Trinucleotide expansions cause disease by both protein- and RNA-mediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.


Assuntos
Biossíntese de Proteínas/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Sequência de Aminoácidos , Northern Blotting , Linhagem Celular , Clonagem Molecular , Códon de Iniciação/genética , Primers do DNA/genética , Imunofluorescência , Vetores Genéticos , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Lentivirus , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese , Distrofia Miotônica/genética , Peptídeos/genética , Peptídeos/metabolismo , Biossíntese de Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA