Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
J Appl Clin Med Phys ; : e14515, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288256

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to identify dose constraints for the parotid ducts that limit patient-reported xerostomia and estimate whether these constraints are achieved during conventional parotid gland sparing radiation therapy (PGS-RT). METHODS AND MATERIALS: Thirty-eight oropharyngeal squamous cell carcinoma patients were treated prospectively on trial with MRI sialography-guided parotid duct sparing radiation therapy (PDS-RT). PDS-RT explicitly minimizes dose to the parotid ducts in addition to PGS-RT. Parotid duct dose constraints were identified that distinguished patients reporting high and low rates of xerostomia. Atlas-based parotid duct contours were generated on a retrospective cohort of similar patients where the parotid ducts were not contoured nor explicitly spared to estimate the dose received by the parotid ducts during PGS-RT. RESULTS: Patients whose intraglandular parotid ducts or total parotid ducts were planned for a mean dose < 14 Gy and < 12 Gy, respectively, reported significantly (p < 0.01) lower rates of xerostomia at 6 and 12 months post-RT. Patients receiving PDS-RT had average total and intraglandular duct doses of 11.6  and 13.6 Gy, respectively, compared to an estimated 23.8  and 22.1 Gy, for those receiving PGS-RT (p < 0.01). Only 6% (6/108) and 20% (22/108) of patients receiving PGS-RT were estimated to meet the dose constraints for the total ducts and intraglandular ducts, respectively. CONCLUSION: Parotid duct dose thresholds exist that appear to distinguish patients with and without xerostomia. The identified dose thresholds are frequently not met in PGS-RT plans. In addition to reducing the dose to the parotid gland(s), parotid duct sparing may also further reduce xerostomia.

4.
Int J Radiat Oncol Biol Phys ; 119(2): 338-353, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38760115

RESUMO

At its very core, radiation oncology involves a trade-off between the benefits and risks of exposing tumors and normal tissue to relatively high doses of ionizing radiation. This trade-off is particularly critical in childhood cancer survivors (CCS), in whom both benefits and risks can be hugely consequential due to the long life expectancy if the primary cancer is controlled. Estimating the normal tissue-related risks of a specific radiation therapy plan in an individual patient relies on predictive mathematical modeling of empirical data on adverse events. The Pediatric Normal-Tissue Effects in the Clinic (PENTEC) collaborative network was formed to summarize and, when possible, to synthesize dose-volume-response relationships for a range of adverse events incident in CCS based on the literature. Normal-tissue clinical radiation biology in children is particularly challenging for many reasons: (1) Childhood malignancies are relatively uncommon-constituting approximately 1% of new incident cancers in the United States-and biologically heterogeneous, leading to many small series in the literature and large variability within and between series. This creates challenges in synthesizing data across series. (2) CCS are at an elevated risk for a range of adverse health events that are not specific to radiation therapy. Thus, excess relative or absolute risk compared with a reference population becomes the appropriate metric. (3) Various study designs and quantities to express risk are found in the literature, and these are summarized. (4) Adverse effects in CCS often occur 30, 50, or more years after therapy. This limits the information content of series with even very extended follow-up, and lifetime risk estimates are typically extrapolations that become dependent on the mathematical model used. (5) The long latent period means that retrospective dosimetry is required, as individual computed tomography-based radiation therapy plans gradually became available after 1980. (6) Many individual patient-level factors affect outcomes, including age at exposure, attained age, lifestyle exposures, health behaviors, other treatment modalities, dose, fractionation, and dose distribution. (7) Prospective databases with individual patient-level data and radiation dosimetry are being built and will facilitate advances in dose-volume-response modeling. We discuss these challenges and attempts to overcome them in the setting of PENTEC.


Assuntos
Sobreviventes de Câncer , Relação Dose-Resposta à Radiação , Humanos , Sobreviventes de Câncer/estatística & dados numéricos , Criança , Lesões por Radiação , Órgãos em Risco/efeitos da radiação , Neoplasias/radioterapia , Medição de Risco , Neoplasias Induzidas por Radiação/etiologia , Dosagem Radioterapêutica
5.
Int J Radiat Oncol Biol Phys ; 119(2): 697-707, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38760117

RESUMO

The major aim of Pediatric Normal Tissue Effects in the Clinic (PENTEC) was to synthesize quantitative published dose/-volume/toxicity data in pediatric radiation therapy. Such systematic reviews are often challenging because of the lack of standardization and difficulty of reporting outcomes, clinical factors, and treatment details in journal articles. This has clinical consequences: optimization of treatment plans must balance between the risks of toxicity and local failure; counseling patients and their parents requires knowledge of the excess risks encountered after a specific treatment. Studies addressing outcomes after pediatric radiation therapy are particularly challenging because: (a) survivors may live for decades after treatment, and the latency time to toxicity can be very long; (b) children's maturation can be affected by radiation, depending on the developmental status of the organs involved at time of treatment; and (c) treatment regimens frequently involve chemotherapies, possibly modifying and adding to the toxicity of radiation. Here we discuss: basic reporting strategies to account for the actuarial nature of the complications; the reporting of modeling of abnormal development; and the need for standardized, comprehensively reported data sets and multivariate models (ie, accounting for the simultaneous effects of radiation dose, age, developmental status at time of treatment, and chemotherapy dose). We encourage the use of tools that facilitate comprehensive reporting, for example, electronic supplements for journal articles. Finally, we stress the need for clinicians to be able to trust artificial intelligence models of outcome of radiation therapy, which requires transparency, rigor, reproducibility, and comprehensive reporting. Adopting the reporting methods discussed here and in the individual PENTEC articles will increase the clinical and scientific usefulness of individual reports and associated pooled analyses.


Assuntos
Neoplasias , Lesões por Radiação , Humanos , Criança , Neoplasias/radioterapia , Lesões por Radiação/prevenção & controle , Lesões por Radiação/etiologia , Órgãos em Risco/efeitos da radiação , Radioterapia/efeitos adversos , Radioterapia/normas , Sobreviventes de Câncer , Dosagem Radioterapêutica , Projetos de Pesquisa/normas , Pré-Escolar
6.
Int J Radiat Oncol Biol Phys ; 120(1): 216-228, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452858

RESUMO

PURPOSE: Radiation-induced lung injury has been shown to alter regional ventilation and perfusion in the lung. However, changes in regional pulmonary gas exchange have not previously been measured. METHODS AND MATERIALS: Ten patients receiving conventional radiation therapy (RT) for lung cancer underwent pre-RT and 3-month post-RT magnetic resonance imaging (MRI) using an established hyperpolarized 129Xe gas exchange technique to map lung function. Four patients underwent an additional 8-month post-RT MRI. The MR signal from inhaled xenon was measured in the following 3 pulmonary compartments: the lung airspaces, the alveolar membrane tissue, and the pulmonary capillaries (interacting with red blood cells [RBCs]). Thoracic 1H MRI scans were acquired, and deformable registration was used to transfer 129Xe functional maps to the RT planning computed tomography scan. The RT-associated changes in ventilation, membrane uptake, and RBC transfer were computed as a function of regional lung dose (equivalent dose in 2-Gy fractions). Pearson correlations and t tests were used to determine statistical significance, and weighted sum of squares linear regression subsequently characterized the dose dependence of each functional component. The pulmonary function testing metrics of forced vital capacity and diffusing capacity for carbon monoxide were also acquired at each time point. RESULTS: Compared with pre-RT baseline, 3-month post-RT ventilation decreased by an average of -0.24 ± 0.05%/Gy (ρ = -0.88; P < .001), membrane uptake increased by 0.69 ± 0.14%/Gy (ρ = 0.94; P < .001), and RBC transfer decreased by -0.41 ± 0.06%/Gy (ρ = -0.92; P < .001). Membrane uptake maintained a strong positive correlation with regional dose at 8 months post-RT, demonstrating an increase of 0.73 ± 0.11%/Gy (ρ = 0.92; P = .006). Changes in membrane uptake and RBC transfer appeared greater in magnitude (%/Gy) for individuals with low heterogeneity in their baseline lung function. An increase in whole-lung membrane uptake showed moderate correlation with decreases in forced vital capacity (ρ = -0.50; P = .17) and diffusing capacity for carbon monoxide (ρ = -0.44; P = .23), with neither correlation reaching statistical significance. CONCLUSIONS: Hyperpolarized 129Xe MRI measured and quantified regional, RT-associated, dose-dependent changes in pulmonary gas exchange. This tool could enable future work to improve our understanding and management of radiation-induced lung injury.


Assuntos
Neoplasias Pulmonares , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Humanos , Isótopos de Xenônio/administração & dosagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Masculino , Idoso , Feminino , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Troca Gasosa Pulmonar , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Eritrócitos/efeitos da radiação , Lesões por Radiação/diagnóstico por imagem , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Alvéolos Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica
8.
Int J Radiat Oncol Biol Phys ; 118(5): 1164-1166, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492967
10.
Int J Radiat Oncol Biol Phys ; 119(2): 655-668, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300187

RESUMO

PURPOSE: Reirradiation is increasingly used in children and adolescents/young adults (AYA) with recurrent primary central nervous system tumors. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) reirradiation task force aimed to quantify risks of brain and brain stem necrosis after reirradiation. METHODS AND MATERIALS: A systematic literature search using the PubMed and Cochrane databases for peer-reviewed articles from 1975 to 2021 identified 92 studies on reirradiation for recurrent tumors in children/AYA. Seventeen studies representing 449 patients who reported brain and brain stem necrosis after reirradiation contained sufficient data for analysis. While all 17 studies described techniques and doses used for reirradiation, they lacked essential details on clinically significant dose-volume metrics necessary for dose-response modeling on late effects. We, therefore, estimated incidences of necrosis with an exact 95% CI and qualitatively described data. Results from multiple studies were pooled by taking the weighted average of the reported crude rates from individual studies. RESULTS: Treated cancers included ependymoma (n = 279 patients; 7 studies), medulloblastoma (n = 98 patients; 6 studies), any CNS tumors (n = 62 patients; 3 studies), and supratentorial high-grade gliomas (n = 10 patients; 1 study). The median interval between initial and reirradiation was 2.3 years (range, 1.2-4.75 years). The median cumulative prescription dose in equivalent dose in 2-Gy fractions (EQD22; assuming α/ß value = 2 Gy) was 103.8 Gy (range, 55.8-141.3 Gy). Among 449 reirradiated children/AYA, 22 (4.9%; 95% CI, 3.1%-7.3%) developed brain necrosis and 14 (3.1%; 95% CI, 1.7%-5.2%) developed brain stem necrosis with a weighted median follow-up of 1.6 years (range, 0.5-7.4 years). The median cumulative prescription EQD22 was 111.4 Gy (range, 55.8-141.3 Gy) for development of any necrosis, 107.7 Gy (range, 55.8-141.3 Gy) for brain necrosis, and 112.1 Gy (range, 100.2-117 Gy) for brain stem necrosis. The median latent period between reirradiation and the development of necrosis was 5.7 months (range, 4.3-24 months). Though there were more events among children/AYA undergoing hypofractionated versus conventionally fractionated reirradiation, the differences were not statistically significant (P = .46). CONCLUSIONS: Existing reports suggest that in children/AYA with recurrent brain tumors, reirradiation with a total EQD22 of about 112 Gy is associated with an approximate 5% to 7% incidence of brain/brain stem necrosis after a median follow-up of 1.6 years (with the initial course of radiation therapy being given with conventional prescription doses of ≤2 Gy per fraction and the second course with variable fractionations). We recommend a uniform approach for reporting dosimetric endpoints to derive robust predictive models of late toxicities following reirradiation.


Assuntos
Tronco Encefálico , Encéfalo , Neoplasias do Sistema Nervoso Central , Necrose , Recidiva Local de Neoplasia , Reirradiação , Humanos , Reirradiação/efeitos adversos , Necrose/etiologia , Criança , Recidiva Local de Neoplasia/radioterapia , Neoplasias do Sistema Nervoso Central/radioterapia , Neoplasias do Sistema Nervoso Central/patologia , Adolescente , Encéfalo/efeitos da radiação , Encéfalo/patologia , Tronco Encefálico/efeitos da radiação , Tronco Encefálico/patologia , Ependimoma/radioterapia , Adulto Jovem , Pré-Escolar , Meduloblastoma/radioterapia , Lesões por Radiação/patologia
11.
Int J Radiat Oncol Biol Phys ; 119(2): 369-386, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276939

RESUMO

The development of normal tissue radiation dose-response models for children with cancer has been challenged by many factors, including small sample sizes; the long length of follow-up needed to observe some toxicities; the continuing occurrence of events beyond the time of assessment; the often complex relationship between age at treatment, normal tissue developmental dynamics, and age at assessment; and the need to use retrospective dosimetry. Meta-analyses of published pediatric outcome studies face additional obstacles of incomplete reporting of critical dosimetric, clinical, and statistical information. This report describes general methods used to address some of the pediatric modeling issues. It highlights previous single- and multi-institutional pediatric dose-response studies and summarizes how each PENTEC taskforce addressed the challenges and limitations of the reviewed publications in constructing, when possible, organ-specific dose-effect models.


Assuntos
Relação Dose-Resposta à Radiação , Neoplasias , Órgãos em Risco , Humanos , Criança , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Pré-Escolar , Dosagem Radioterapêutica , Modelos Biológicos , Fatores Etários , Lactente , Adolescente , Lesões por Radiação/prevenção & controle
12.
Int J Radiat Oncol Biol Phys ; 118(4): 931-943, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682981

RESUMO

We sought to systematically review and summarize dosimetric factors associated with radiation-induced brachial plexopathy (RIBP) after stereotactic body radiation therapy (SBRT) or hypofractionated image guided radiation therapy (HIGRT). From published studies identified from searches of PubMed and Embase databases, data quantifying risks of RIBP after 1- to 10-fraction SBRT/HIGRT were extracted and summarized. Published studies have reported <10% risks of RIBP with maximum doses (Dmax) to the inferior aspect of the brachial plexus of 32 Gy in 5 fractions and 25 Gy in 3 fractions. For 10-fraction HIGRT, risks of RIBP appear to be low with Dmax < 40 to 50 Gy. For a given dose value, greater risks are anticipated with point volume-based metrics (ie, D0.03-0.035cc: minimum dose to hottest 0.03-0.035 cc) versus Dmax. With SBRT/HIGRT, there were insufficient published data to predict risks of RIBP relative to brachial plexus dose-volume exposure. Minimizing maximum doses and possibly volume exposure of the brachial plexus can reduce risks of RIBP after SBRT/HIGRT. Further study is needed to better understand the effect of volume exposure on the brachial plexus and whether there are location-specific susceptibilities along or within the brachial plexus structure.


Assuntos
Neuropatias do Plexo Braquial , Plexo Braquial , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Plexo Braquial/efeitos da radiação , Neuropatias do Plexo Braquial/etiologia , Neuropatias do Plexo Braquial/prevenção & controle , Radiometria
13.
Artigo em Inglês | MEDLINE | ID: mdl-38069917

RESUMO

Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38069918

RESUMO

PURPOSE: A PENTEC (Pediatric Normal Tissue Effects in the Clinic) review was performed to estimate the dose-volume effects of radiation therapy on spine deformities and growth impairment for patients who underwent radiation therapy as children. METHODS AND MATERIALS: A systematic literature search was performed to identify published data for spine deformities and growth stunting. Data were extracted from 12 reports of children irradiated to the spine (N = 603 patients). The extracted data were analyzed to find associations between complication risks and the radiation dose (conventional fractionation throughout) as impacted by exposed volumes and age using the mixed-effects logistic regression model. When appropriate, corrections were made for radiation modality, namely orthovoltage beams. RESULTS: In the regression analysis, the association between vertebral dose and scoliosis rate was highly significant (P < .001). Additionally, young age at time of radiation was highly predictive of adverse outcomes. Clinically significant scoliosis can occur with doses ≥15 Gy to vertebrae during infancy (<2 years of age). For children irradiated at 2 to 6 years of age, overall scoliosis rates of any grade were >30% with doses >20 Gy; grade 2 or higher scoliosis was correlated with doses ≥30 Gy. Children >6 years of age remain at risk for scoliosis with doses >30 Gy; however, most cases will be mild. There are limited data regarding the effect of dose gradients across the spine on degree of scoliosis. The risk of clinically meaningful height loss was minimal when irradiating small volumes of the spine up to 20 Gy (eg, flank irradiation), except in infants who are more vulnerable to lower doses. Growth stunting was more frequent when larger segments of the spine (eg, the entire spine or craniospinal irradiation) were irradiated before puberty to doses >20 Gy. The effect was modest when patients were irradiated after puberty to doses >20 Gy. CONCLUSIONS: To reduce the risk of kyphoscoliosis and growth impairment, the dose to the spine should be kept to <20 Gy for children <6 years of age and to <10 to 15 Gy in infants. The number of vertebral bodies irradiated and dose gradients across the spine should also be limited when possible.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37999712

RESUMO

Pediatric Normal Tissue Effects in the Clinic (PENTEC) is an international multidisciplinary effort that aims to summarize normal-tissue toxicity risks based on published dose-volume data from studies of children and adolescents treated with radiation therapy (RT) for cancer. With recognition that children are uniquely vulnerable to treatment-related toxic effects, our mission and challenge was to assemble our group of physicians (radiation and pediatric oncologists, subspecialists), physicists with clinical and modeling expertise, epidemiologists, and other scientists to develop evidence-based radiation dosimetric guidelines, as affected by developmental status and other factors (eg, other cancer therapies and host factors). These quantitative toxicity risk estimates could serve to inform RT planning and thereby improve outcomes. Tandem goals included the description of relevant medical physics issues specific to pediatric RT and the proposal of dose-volume outcome reporting standards to inform future studies. We created 19 organ-specific task forces and methodology to unravel the wealth of data from heterogeneous published studies. This report provides a high-level summary of PENTEC's genesis, methods, key findings, and associated concepts that affected our work and an explanation of how our findings may be interpreted and applied in the clinic. We acknowledge our predecessors in these efforts, and we pay homage to the children whose lives informed us and to future generations who we hope will benefit from this additional step in our path forward.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37452796

RESUMO

PURPOSE: Kidney injury is a known late and potentially devastating complication of abdominal radiation therapy (RT) in pediatric patients. A comprehensive Pediatric Normal Tissue Effects in the Clinic review by the Genitourinary (GU) Task Force aimed to describe RT dose-volume relationships for GU dysfunction, including kidney, bladder, and hypertension, for pediatric malignancies. The effect of chemotherapy was also considered. METHODS AND MATERIALS: We conducted a comprehensive PubMed search of peer-reviewed manuscripts published from 1990 to 2017 for investigations on RT-associated GU toxicities in children treated for cancer. We retrieved 3271 articles with 100 fulfilling criteria for full review, 24 with RT dose data and 13 adequate for modeling. Endpoints were heterogenous and grouped according to National Kidney Foundation: grade ≥1, grade ≥2, and grade ≥3. We modeled whole kidney exposure from total body irradiation (TBI) for hematopoietic stem cell transplant and whole abdominal irradiation (WAI) for patients with Wilms tumor. Partial kidney tolerance was modeled from a single publication from 2021 after the comprehensive review revealed no usable partial kidney data. Inadequate data existed for analysis of bladder RT-associated toxicities. RESULTS: The 13 reports with long-term GU outcomes suitable for modeling included 4 on WAI for Wilms tumor, 8 on TBI, and 1 for partial renal RT exposure. These reports evaluated a total of 1191 pediatric patients, including: WAI 86, TBI 666, and 439 partial kidney. The age range at the time of RT was 1 month to 18 years with medians of 2 to 11 years in the various reports. In our whole kidney analysis we were unable to include chemotherapy because of the heterogeneity of regimens and paucity of data. Age-specific toxicity data were also unavailable. Wilms studies occurred from 1968 to 2011 with mean follow-ups 8 to 15 years. TBI studies occurred from 1969 to 2004 with mean follow-ups of 4 months to 16 years. We modeled risk of dysfunction by RT dose and grade of toxicity. Normal tissue complication rates ≥5%, expressed as equivalent doses, 2 Gy/fx for whole kidney exposures occurred at 8.5, 10.2, and 14.5 Gy for National Kidney Foundation grades ≥1, ≥2, and ≥3, respectively. Conventional Wilms WAI of 10.5 Gy in 6 fx had risks of ≥grade 2 toxicity 4% and ≥grade 3 toxicity 1%. For fractionated 12 Gy TBI, those risks were 8% and <3%, respectively. Data did not support whole kidney modeling with chemotherapy. Partial kidney modeling from 439 survivors who received RT (median age, 7.3 years) demonstrated 5 or 10 Gy to 100% kidney gave a <5% risk of grades 3 to 5 toxicity with 1500 mg/m2 carboplatin or no chemo. With 480 mg/m2 cisplatin, a 3% risk of ≥grade 3 toxicity occurred without RT and a 5% risk when 26% kidney received ≥10 Gy. With 63 g/m2 of ifosfamide, a 5% risk of ≥grade 3 toxicity occurred with no RT, and a 10% toxicity risk occurred when 42% kidney received ≥10 Gy. CONCLUSIONS: In patients with Wilms tumor, the risk of toxicity from 10.5 Gy of WAI is low. For 12 Gy fractionated TBI with various mixtures of chemotherapy, the risk of severe toxicity is low, but low-grade toxicity is not uncommon. Partial kidney data are limited and toxicity is associated heavily with the use of nephrotoxic chemotherapeutic agents. Our efforts demonstrate the need for improved data gathering, systematic follow-up, and reporting in future clinical studies. Current radiation dose used for Wilms tumor and TBI appear to be safe; however, efforts in effective kidney-sparing TBI and WAI regimens may reduce the risks of renal injury without compromising cure.

18.
Radiother Oncol ; 182: 109583, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842665

RESUMO

INTRODUCTION: Radiation-induced brachial plexopathy (RIBP), resulting in symptomatic motor or sensory deficits of the upper extremity, is a risk after exposure of the brachial plexus to therapeutic doses of radiation. We sought to model dosimetric factors associated with risks of RIBP after stereotactic body radiotherapy (SBRT). METHODS: From a prior systematic review, 4 studies were identified that included individual patient data amenable to normal tissue complication probability (NTCP) modelling after SBRT for apical lung tumors. Two probit NTCP models were derived: one from 4 studies (including 221 patients with 229 targets and 18 events); and another from 3 studies (including 185 patients with 192 targets and 11 events) that similarly contoured the brachial plexus. RESULTS: NTCP models suggest ≈10% risks associated with brachial plexus maximum dose (Dmax) of ∼32-34 Gy in 3 fractions and ∼40-43 Gy in 5 fractions. RIBP risks increase with increasing brachial plexus Dmax. Compared to previously published data from conventionally-fractionated or moderately-hypofractionated radiotherapy for breast, lung and head and neck cancers (which tend to utilize radiation fields that circumferentially irradiate the brachial plexus), SBRT (characterized by steep dose gradients outside of the target volume) exhibits a much less steep dose-response with brachial plexus Dmax > 90-100 Gy in 2-Gy equivalents. CONCLUSIONS: A dose-response for risk of RIBP after SBRT is observed relative to brachial plexus Dmax. Comparisons to data from less conformal radiotherapy suggests potential dose-volume dependences of RIBP risks, though published data were not amenable to NTCP modelling of dose-volume measures associated with RIBP after SBRT.


Assuntos
Neuropatias do Plexo Braquial , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Estudos Retrospectivos , Neuropatias do Plexo Braquial/etiologia
19.
J Patient Saf ; 19(1): e18-e24, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948321

RESUMO

OBJECTIVES: Stereotactic body radiation therapy (SBRT) can improve therapeutic ratios and patient convenience, but delivering higher doses per fraction increases the potential for patient harm. Incident learning systems (ILSs) are being increasingly adopted in radiation oncology to analyze reported events. This study used an ILS coupled with a Human Factor Analysis and Classification System (HFACS) and barriers management to investigate the origin and detection of SBRT events and to elucidate how safeguards can fail allowing errors to propagate through the treatment process. METHODS: Reported SBRT events were reviewed using an in-house ILS at 4 institutions over 2014-2019. Each institution used a customized care path describing their SBRT processes, including designated safeguards to prevent error propagation. Incidents were assigned a severity score based on the American Association of Physicists in Medicine Task Group Report 275. An HFACS system analyzed failing safeguards. RESULTS: One hundred sixty events were analyzed with 106 near misses (66.2%) and 54 incidents (33.8%). Fifty incidents were designated as low severity, with 4 considered medium severity. Incidents most often originated in the treatment planning stage (38.1%) and were caught during the pretreatment review and verification stage (37.5%) and treatment delivery stage (31.2%). An HFACS revealed that safeguard failures were attributed to human error (95.2%), routine violation (4.2%), and exceptional violation (0.5%) and driven by personnel factors 32.1% of the time, and operator condition also 32.1% of the time. CONCLUSIONS: Improving communication and documentation, reducing time pressures, distractions, and high workload should guide proposed improvements to safeguards in radiation oncology.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Humanos , Instalações de Saúde , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA