Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 61(11): 1056-1070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111610

RESUMO

Abnormal molecular processes occurring throughout the genome leave distinct somatic mutational patterns termed mutational signatures. Exploring the associations between mutational signatures and clinicopathological features can unravel potential mechanisms driving tumorigenic processes. We analyzed whole genome sequencing (WGS) data of tumor and peripheral blood samples from 37 primary breast cancer (BC) patients receiving neoadjuvant chemotherapy. Comprehensive clinico-pathologic features were correlated with genomic profiles and mutational signatures. Somatic mutational landscapes were highly concordant with known BC data sets. Remarkably, we observed a divergence of dominant mutational signatures in association with BC subtype. Signature 5 was overrepresented in hormone receptor positive (HR+) patients, whereas triple-negative tumors mostly lacked Signature 5, but expectedly overrepresented Signature 3. We validated these findings in a large WGS data set of BC, demonstrating dominance of Signature 5 in HR+ patients, mostly in luminal A subtype. We further investigated the association between Signature 5 and gene expression signatures, and identified potential networks, likely related to estrogen regulation. Our results suggest that the yet elusive Signature 5 represents an alternative mechanism for mutation accumulation in HR+ BC, independent of the homologous recombination repair machinery related to Signature 3. This study provides theoretical basis for further elucidating the processes promoting hormonal breast carcinogenesis.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese , Reparo do DNA , Estrogênios , Feminino , Humanos , Mutação
2.
JNCI Cancer Spectr ; 4(1): pkz067, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32064457

RESUMO

BACKGROUND: Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. METHODS: We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. RESULTS: DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. CONCLUSIONS: The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.

3.
BMC Genomics ; 19(1): 419, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848287

RESUMO

BACKGROUND: The main bottleneck for genomic studies of tumors is the limited availability of fresh frozen (FF) samples collected from patients, coupled with comprehensive long-term clinical follow-up. This shortage could be alleviated by using existing large archives of routinely obtained and stored Formalin-Fixed Paraffin-Embedded (FFPE) tissues. However, since these samples are partially degraded, their RNA sequencing is technically challenging. RESULTS: In an effort to establish a reliable and practical procedure, we compared three protocols for RNA sequencing using pairs of FF and FFPE samples, both taken from the same breast tumor. In contrast to previous studies, we compared the expression profiles obtained from the two matched sample types, using the same protocol for both. Three protocols were tested on low initial amounts of RNA, as little as 100 ng, to represent the possibly limited availability of clinical samples. For two of the three protocols tested, poly(A) selection (mRNA-seq) and ribosomal-depletion, the total gene expression profiles of matched FF and FFPE pairs were highly correlated. For both protocols, differential gene expression between two FFPE samples was in agreement with their matched FF samples. Notably, although expression levels of FFPE samples by mRNA-seq were mainly represented by the 3'-end of the transcript, they yielded very similar results to those obtained by ribosomal-depletion protocol, which produces uniform coverage across the transcript. Further, focusing on clinically relevant genes, we showed that the high correlation between expression levels persists at higher resolutions. CONCLUSIONS: Using the poly(A) protocol for FFPE exhibited, unexpectedly, similar efficiency to the ribosomal-depletion protocol, with the latter requiring much higher (2-3 fold) sequencing depth to compensate for the relative low fraction of reads mapped to the transcriptome. The results indicate that standard poly(A)-based RNA sequencing of archived FFPE samples is a reliable and cost-effective alternative for measuring mRNA-seq on FF samples. Expression profiling of FFPE samples by mRNA-seq can facilitate much needed extensive retrospective clinical genomic studies.


Assuntos
Criopreservação , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Análise de Sequência de RNA , Fixação de Tecidos/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Humanos
4.
Nat Genet ; 48(1): 22-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642241

RESUMO

The contribution of repetitive elements to quantitative human traits is largely unknown. Here we report a genome-wide survey of the contribution of short tandem repeats (STRs), which constitute one of the most polymorphic and abundant repeat classes, to gene expression in humans. Our survey identified 2,060 significant expression STRs (eSTRs). These eSTRs were replicable in orthogonal populations and expression assays. We used variance partitioning to disentangle the contribution of eSTRs from that of linked SNPs and indels and found that eSTRs contribute 10-15% of the cis heritability mediated by all common variants. Further functional genomic analyses showed that eSTRs are enriched in conserved regions, colocalize with regulatory elements and may modulate certain histone modifications. By analyzing known genome-wide association study (GWAS) signals and searching for new associations in 1,685 whole genomes from deeply phenotyped individuals, we found that eSTRs are enriched in various clinically relevant conditions. These results highlight the contribution of STRs to the genetic architecture of quantitative human traits.


Assuntos
Expressão Gênica , Variação Genética , Genoma Humano , Repetições de Microssatélites , Doença de Crohn/genética , Estudo de Associação Genômica Ampla , Histonas/genética , Histonas/metabolismo , Humanos , Mutação INDEL , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequências Reguladoras de Ácido Nucleico , Gêmeos/genética
5.
PLoS One ; 9(5): e96788, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24816892

RESUMO

Hemifacial microsomia (HFM) is the second most common facial anomaly after cleft lip and palate. The phenotype is highly variable and most cases are sporadic. We investigated the disorder in a large pedigree with five affected individuals spanning eight meioses. Whole-exome sequencing results indicated the absence of a pathogenic coding point mutation. A genome-wide survey of segmental variations identified a 1.3 Mb duplication of chromosome 14q22.3 in all affected individuals that was absent in more than 1000 chromosomes of ethnically matched controls. The duplication was absent in seven additional sporadic HFM cases, which is consistent with the known heterogeneity of the disorder. To find the critical gene in the duplicated region, we analyzed signatures of human craniofacial disease networks, mouse expression data, and predictions of dosage sensitivity. All of these approaches implicated OTX2 as the most likely causal gene. Moreover, OTX2 is a known oncogenic driver in medulloblastoma, a condition that was diagnosed in the proband during the course of the study. Our findings suggest a role for OTX2 dosage sensitivity in human craniofacial development and raise the possibility of a shared etiology between a subtype of hemifacial microsomia and medulloblastoma.


Assuntos
Duplicação Gênica , Síndrome de Goldenhar/genética , Fatores de Transcrição Otx/genética , Animais , Duplicação Cromossômica , Cromossomos Humanos Par 14/genética , Variações do Número de Cópias de DNA/genética , Éxons/genética , Feminino , Humanos , Masculino , Camundongos
6.
Am J Hum Genet ; 87(6): 820-8, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21092922

RESUMO

Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by PLP1 mutations. A similar autosomal-recessive phenotype, Pelizaeus-Merzbacher-like disease (PMLD), has been shown to be caused by homozygous mutations in GJC2 or HSPD1. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD in which linkage to PLP1, GJC2, and HSPD1 was excluded. Through genome-wide homozygosity mapping and mutation analysis, we demonstrated in all affected individuals a homozygous frameshift mutation that fully abrogates the main active domain of AIMP1, encoding ARS-interacting multifunctional protein 1. The mutation fully segregates with the disease-associated phenotype and was not found in 250 Bedouin controls. Our findings are in line with the previously demonstrated inability of mutant mice lacking the AIMP1/p43 ortholog to maintain axon integrity in the central and peripheral neural system.


Assuntos
Citocinas/genética , Homozigoto , Mutação , Proteínas de Neoplasias/genética , Doença de Pelizaeus-Merzbacher/genética , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Animais , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Camundongos , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA