Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FASEB J ; 35(6): e21655, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042218

RESUMO

Tendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse-induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography-tandem mass spectrometry in response to synergist ablation-induced plantaris tendon overuse. Sixty-four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post-surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation-related genes, and increased intratendinous concentrations of the pro-inflammatory eicosanoids thromboxane B2 and prostaglandin E2 . By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2 , F2α , and I2 . Specialized pro-resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D-resolvins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and lipoxins (15-hydroxy-eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti-inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy-eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro-inflammatory eicosanoids and a relative lack of specialized pro-resolving lipid mediators.


Assuntos
Tendão do Calcâneo/patologia , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Lipídeos/análise , Metaboloma , Traumatismos dos Tendões/patologia , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Animais , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos dos Tendões/etiologia , Traumatismos dos Tendões/metabolismo
2.
Front Aging ; 2: 821904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35821997

RESUMO

Aging results in the progressive accumulation of senescent cells in tissues that display loss of proliferative capacity and acquire a senescence-associated secretory phenotype (SASP). The tumor suppressor, p16 INK4A , which slows the progression of the cell cycle, is highly expressed in most senescent cells and the removal of p16-expressing cells has been shown to be beneficial to tissue health. Although much work has been done to assess the effects of cellular senescence on a variety of different organs, little is known about the effects on skeletal muscle and whether reducing cellular senescent load would provide a therapeutic benefit against age-related muscle functional decline. We hypothesized that whole-body ablation of p16-expressing cells in the advanced stages of life in mice would provide a therapeutic benefit to skeletal muscle structure and function. Treatment of transgenic p16-3MR mice with ganciclovir (GCV) from 20 to 26 months of age resulted in reduced p16 mRNA levels in muscle. At 26 months of age, the masses of tibialis anterior, extensor digitorum longus, gastrocnemius and quadriceps muscles were significantly larger in GCV-treated compared with vehicle-treated mice, but this effect was limited to male mice. Maximum isometric force for gastrocnemius muscles was also greater in GCV-treated male mice compared to controls. Further examination of muscles of GCV- and vehicle-treated mice showed fewer CD68-positive macrophages present in the tissue following GCV treatment. Plasma cytokine levels were also measured with only one, granulocyte colony stimulating factor (G-CSF), out of 22 chemokines analyzed was reduced in GCV-treated mice. These findings show that genetic ablation of p16+ senescent cells provides moderate and sex specific therapeutic benefits to muscle mass and function.

3.
J Cachexia Sarcopenia Muscle ; 12(1): 130-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231914

RESUMO

BACKGROUND: Translational capacity (i.e. ribosomal mass) is a key determinant of protein synthesis and has been associated with skeletal muscle hypertrophy. The role of translational capacity in muscle atrophy and regrowth from disuse is largely unknown. Therefore, we investigated the effect of muscle disuse and reloading on translational capacity in middle-aged men (Study 1) and in rats (Study 2). METHODS: In Study 1, 28 male participants (age 50.03 ± 3.54 years) underwent 2 weeks of knee immobilization followed by 2 weeks of ambulatory recovery and a further 2 weeks of resistance training. Muscle biopsies were obtained for measurement of total RNA and pre-ribosomal (r)RNA expression, and vastus lateralis cross-sectional area (CSA) was determined via peripheral quantitative computed tomography. In Study 2, male rats underwent hindlimb suspension (HS) for either 24 h (HS 24 h, n = 4) or 7 days (HS 7d, n = 5), HS for 7 days followed by 7 days of reloading (Rel, n = 5) or remained as ambulatory weight bearing (WB, n = 5) controls. Rats received deuterium oxide throughout the study to determine RNA synthesis and degradation, and mTORC1 signalling pathway was assessed. RESULTS: Two weeks of immobilization reduced total RNA concentration (20%) and CSA (4%) in men (both P ≤ 0.05). Ambulatory recovery restored total RNA concentration to baseline levels and partially restored muscle CSA. Total RNA concentration and 47S pre-rRNA expression increased above basal levels after resistance training (P ≤ 0.05). In rats, RNA synthesis was 30% lower while degradation was ~400% higher in HS 7d in soleus and plantaris muscles compared with WB (P ≤ 0.05). mTORC1 signalling was lower in HS compared with WB as was 47S pre-rRNA (P ≤ 0.05). With reloading, the aforementioned parameters were restored to WB levels while RNA degradation was suppressed (P ≤ 0.05). CONCLUSIONS: Changes in RNA concentration following muscle disuse and reloading were associated with changes in ribosome biogenesis and degradation, indicating that both processes are important determinants of translational capacity. The pre-clinical data help explain the reduced translational capacity after muscle immobilization in humans and demonstrate that ribosome biogenesis and degradation might be valuable therapeutic targets to maintain muscle mass during disuse.


Assuntos
Ribossomos , Animais , Elevação dos Membros Posteriores , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Biossíntese de Proteínas , Ratos
4.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32750044

RESUMO

Specialized proresolving mediators (SPMs) actively limit inflammation and expedite its resolution by modulating leukocyte recruitment and function. Here we profiled intramuscular lipid mediators via liquid chromatography-tandem mass spectrometry-based metabolipidomics following myofiber injury and investigated the potential role of SPMs in skeletal muscle inflammation and repair. Both proinflammatory eicosanoids and SPMs increased following myofiber damage induced by either intramuscular injection of barium chloride or synergist ablation-induced functional muscle overload. Daily systemic administration of the SPM resolvin D1 (RvD1) as an immunoresolvent limited the degree and duration of inflammation, enhanced regenerating myofiber growth, and improved recovery of muscle strength. RvD1 suppressed inflammatory cytokine expression, enhanced polymorphonuclear cell clearance, modulated the local muscle stem cell response, and polarized intramuscular macrophages to a more proregenerative subset. RvD1 had minimal direct impact on in vitro myogenesis but directly suppressed myokine production and stimulated macrophage phagocytosis, showing that SPMs can modulate both infiltrating myeloid and resident muscle cell populations. These data reveal the efficacy of immunoresolvents as a novel alternative to classical antiinflammatory interventions in the management of muscle injuries to modulate inflammation while stimulating tissue repair.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/terapia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Células Mieloides/citologia , Regeneração , Células-Tronco/citologia , Animais , Ácidos Docosa-Hexaenoicos/genética , Feminino , Inflamação/genética , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Células Mieloides/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
5.
Int J Sport Nutr Exerc Metab ; 29(6): 664-670, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592623

RESUMO

PURPOSE: To determine the acute effects of carbohydrate (CHO) ingestion following a bout of maximal eccentric resistance exercise on key anabolic kinases of mammalian target of rapamycin and extracellular signal-regulated kinase (ERK) pathways. The authors' hypothesis was that the activation of anabolic signaling pathways known to be upregulated by resistance exercise would be further stimulated by the physiological hyperinsulinemia resulting from CHO supplementation. METHODS: Ten resistance-trained men were randomized in a crossover, double-blind, placebo (PLA)-controlled manner to ingest either a noncaloric PLA or 3 g/kg of CHO beverage throughout recovery from resistance exercise. Muscle biopsies were collected at rest, immediately after a single bout of intense lower body resistance exercise, and after 3 hr of recovery. RESULTS: CHO ingestion elevated plasma glucose and insulin concentrations throughout recovery compared with PLA ingestion. The ERK pathway (phosphorylation of ERK1/2 [Thr202/Tyr204], RSK [Ser380], and p70S6K [Thr421/Ser424]) was markedly activated immediately after resistance exercise, without any effect of CHO supplementation. The phosphorylation state of AKT (Thr308) was unchanged postexercise in the PLA trial and increased at 3 hr of recovery above resting with ingestion of CHO compared with PLA. Despite stimulating-marked phosphorylation of AKT, CHO ingestion did not enhance resistance exercise-induced phosphorylation of p70S6K (Thr389) and rpS6 (Ser235/236 and Ser240/244). CONCLUSION: CHO supplementation after resistance exercise and hyperinsulinemia does not influence the ERK pathway nor the mTORC1 target p70S6K and its downstream proteins, despite the increased AKT phosphorylation.


Assuntos
Carboidratos da Dieta/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treinamento Resistido , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Humanos , Insulina/sangue , Masculino , Adulto Jovem
6.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R824-R833, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466686

RESUMO

Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.


Assuntos
Temperatura Baixa , Imersão , Fibras Musculares Esqueléticas/fisiologia , Neovascularização Fisiológica/fisiologia , Treinamento Resistido , Capilares/fisiologia , Miosinas Cardíacas/biossíntese , Humanos , Masculino , MicroRNAs/biossíntese , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/biossíntese , Fluxo Sanguíneo Regional/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto Jovem
7.
Am J Physiol Cell Physiol ; 314(4): C389-C403, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29341790

RESUMO

Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRß, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.


Assuntos
Fibroblastos/enzimologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Traumatismos dos Tendões/enzimologia , Tendões/enzimologia , Tendões/crescimento & desenvolvimento , Animais , Becaplermina/farmacologia , Benzimidazóis/farmacologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Matriz Extracelular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Masculino , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/patologia , Tendões/efeitos dos fármacos , Tendões/patologia
8.
Mol Nutr Food Res ; 62(7): e1701028, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377592

RESUMO

Limb immobilization results in a rapid loss of muscle size and strength. The resultant alterations in signaling pathways governing myogenesis, catabolism, and mitochondrial biogenesis are likely to include posttranscriptional regulation mediated by altered microRNAs (miRNAs). Given that protein ingestion exerts an anabolic action and may act as a countermeasure to mitigate muscle loss with immobilization, it is important to examine miRNA in this context. The objective of the study is therefore to characterize the vastus lateralis miRNA response to 14 days of disuse in males (45-60 years) randomized to receive supplementation with 20 g d-1 of dairy protein (n = 12) or isocaloric carbohydrate placebo (n = 13). Biopsies are collected before and after a 2-week immobilization period. Of the 24 miRNAs previously identified in myogenic regulation, seven (miR-133a, -206, -15a, -451a, -126, -208b, and let-7e) are increased with immobilization irrespective of group; five (miR-16, -494, let-7a, -7c, and 7d) increased only in the carbohydrate group; and eight (miR-1, -486, -23a, -23b, -26a, -148b, let-7b, and -7g) are divergently expressed between groups (suppressed with protein). The ability of protein supplementation to differentially regulate miRNAs involved in key muscle regulatory pathways following short-term limb immobilization reflects potential protective function in mitigating muscle loss during limb immobilization.


Assuntos
Suplementos Nutricionais , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas do Leite/uso terapêutico , Músculo Esquelético/metabolismo , Atrofia Muscular/prevenção & controle , Restrição Física/efeitos adversos , Bebidas , Biópsia por Agulha , Desjejum , Estudos de Coortes , Perfilação da Expressão Gênica , Humanos , Joelho , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Quadríceps
9.
Nutrients ; 9(4)2017 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-28368340

RESUMO

Postprandial inflammation and endotoxaemia are determinants of cardiovascular and metabolic disease risk which are amplified by high fat meals. We aimed to examine the determinants of postprandial inflammation and endotoxaemia in older and younger adults following a high fat mixed meal. In a randomised cross-over trial, healthy participants aged 20-25 and 60-75 years (n = 15/group) consumed a high-fat breakfast and a low-fat breakfast. Plasma taken at baseline and post-meal for 5 h was analysed for circulating endotoxin, cytokines (monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-1ß, IL-6, and tumour necrosis factor-alpha (TNF-α)), lipopolysaccharide binding protein (LBP), and inflammatory gene expression in peripheral blood mononuclear cells (PBMC). Older subjects had lower baseline PBMC expression of Glutathione peroxidase 1 (GPX-1) but greater insulin-like growth factor-binding protein 3 (IGFBP3) and circulating MCP-1 compared to younger subjects. After either meal, there were no age differences in plasma, chylomicron endotoxin, or plasma LBP concentrations, nor in inflammatory cytokine gene and protein expression (MCP-1, IL-1ß, and TNF-α). Unlike younger participants, the older group had decreased superoxide dismutase (SOD)-2 expression after the meals. After a high-fat meal, older adults have no increased inflammatory or endotoxin response, but an altered oxidative stress gene response compared with younger adults. Healthy older adults, without apparent metabolic dysfunction, have a comparable postprandial inflammatory and endotoxaemia response to younger adults.


Assuntos
Doenças Cardiovasculares/etiologia , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição do Idoso , Regulação da Expressão Gênica no Desenvolvimento , Leucócitos Mononucleares/metabolismo , Doenças Metabólicas/etiologia , Vasculite/etiologia , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Desjejum , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Estudos de Coortes , Estudos Cross-Over , Feminino , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Pessoa de Meia-Idade , Nova Zelândia/epidemiologia , Período Pós-Prandial , Fatores de Risco , Vasculite/imunologia , Vasculite/metabolismo , Vasculite/fisiopatologia , Adulto Jovem
10.
FEBS Lett ; 591(5): 801-809, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28129672

RESUMO

The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRß) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth.


Assuntos
Hipertrofia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Tendão do Calcâneo/cirurgia , Animais , Animais Recém-Nascidos , Benzimidazóis/farmacologia , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipertrofia/genética , Hipertrofia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Quinolinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Suporte de Carga
11.
Food Chem ; 184: 57-64, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25872426

RESUMO

Oxidised lipid species, their bioavailability and impact on inflammatory responses from cooked beef steak are poorly characterised. Oxidised lipid species from pan-fried (PF) and sous-vide (SV) thermally processed beef were determined with UHPLC-ESI/MS. Twenty-three lipid oxidation products increased with thermal processing and differences between the PF and SV steaks were measured. Fifteen oxidised lipids were measured in post-meal plasma after a cross-over randomised clinical study. Postprandial plasma inflammatory markers tended to remain lower following the SV meal than the PF meal. High levels of conjugated dienes were measured in the HDL fraction, suggesting that the protective effect of HDL may extend to the reverse-transport of oxidised lipid species. Oxidised lipids in a single meal may influence postprandial oxidative stress and inflammation. Further studies are required to examine the lipid oxidative responses to increased dietary oxidative lipid load, including the reverse transport activity of HDL.


Assuntos
Inflamação/etiologia , Metabolismo dos Lipídeos , Carne Vermelha , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Culinária , Gorduras na Dieta/metabolismo , Ácidos Graxos/análise , Glutationa/sangue , Humanos , Estresse Oxidativo , Período Pós-Prandial/fisiologia
12.
Physiol Rep ; 2(10)2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344476

RESUMO

Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor-κB (NF-κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF-κB pathway regulates the early activation of post-exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post-exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post-exercise and analysed for key markers of NF-κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post-exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF-κB p50 protein expression and NF-κB p50 binding activity were lower than pre-exercise at 0 and 3 h post-exercise, but were elevated at 24 h post-exercise. These findings provide novel evidence that two distinct NF-κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF-κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF-κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research.

13.
Am J Physiol Endocrinol Metab ; 307(7): E539-52, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25096178

RESUMO

This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; -47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.


Assuntos
Glicemia , Metabolismo dos Carboidratos/fisiologia , Exercício Físico/fisiologia , Ácido Láctico/sangue , Metabolismo dos Lipídeos/fisiologia , Consumo de Oxigênio/fisiologia , Hormônio Adrenocorticotrópico/sangue , Adulto , Aminoácidos/sangue , Ácidos Graxos Monoinsaturados/sangue , Cromatografia Gasosa-Espectrometria de Massas , Hormônio do Crescimento Humano/sangue , Humanos , Hidrocortisona/sangue , Interleucina-6/sangue , Masculino , Metaboloma/fisiologia , Norepinefrina/sangue , Oxirredução , Ácidos Tricarboxílicos/sangue
14.
J Appl Physiol (1985) ; 117(1): 20-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24833778

RESUMO

Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exercise. Subjects orally ingested 1,200 mg ibuprofen (or placebo control) in three 400-mg doses administered ∼30 min before and ∼6 h and ∼12 h following a bout of unaccustomed resistance exercise (80% one repetition maximum). Muscle biopsies were obtained at rest (preexercise), immediately postexercise (0 h), 3 h postexercise, and at 24 h of recovery. In the placebo (PLA) group, phosphorylation of ERK1/2 (Thr202/Tyr204), ribosomal protein S6 kinase (RSK, Ser380), mitogen-activated kinase 1 (Mnk1, Thr197/202), and p70S6 kinase (p70S6K, Thr421/Ser424) increased at both 0 and 3 h postexercise, with delayed elevation of phospho (p)-p70S6K (Thr389) and p-rpS6 (Ser235/S36 and Ser240/244) at 3 h postexercise. Only p-ERK1/2 (Thr202/Tyr204) remained significantly elevated in the 24-h postexercise biopsy. Ibuprofen treatment prevented sustained elevation of MEK-ERK signaling at 3 h (p-ERK1/2, p-RSK, p-Mnk1, p-p70S6K Thr421/Ser424) and 24 h (p-ERK1/2) postexercise, and this was associated with suppressed phosphorylation of ribosomal protein S6 (Ser235/236 and Ser240/244). Early contraction-induced p-Akt (Ser473) and p-p70S6K (Thr389) were not influenced by ibuprofen, but p-p70S6K (Thr389) remained elevated 24 h postexercise only in those receiving ibuprofen treatment. Early muscle signaling responses to resistance exercise are, in part, ibuprofen sensitive, suggesting that PGs are important signaling molecules during early postexercise recovery.


Assuntos
Exercício Físico/fisiologia , Ibuprofeno/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Adulto , Anti-Inflamatórios não Esteroides/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Elongação Traducional da Cadeia Peptídica/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA