Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 248: 115070, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628850

RESUMO

Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the ability of resistance to structurally and functionally unrelated anticancer drugs. Nowadays, the design of ABCG2 inhibitors as potential agents to enhance the chemotherapy efficacy is an interesting strategy. In this context, we have used computer-aided drug design (CADD) based on available data of a large series of potent inhibitors from our groups as an approach in guiding the design of effective ABCG2 inhibitors. We report therein the results on the use of the FLAPpharm method to elucidate the pharmacophoric features of one of the ABCG2 binding sites involved in the regulation of the basal ATPase activity of the transporter. The predictivity of the model was evaluated by testing three predicted compounds which were found to induce high inhibitory activity of BCRP, in the nanomolar range for the best of them.


Assuntos
Antineoplásicos , Proteínas de Neoplasias , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos
2.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198928

RESUMO

Protein kinase CK2 is involved in regulating cellular processes, such as cell cycle, proliferation, migration, and apoptosis, making it an attractive anticancer target. We previously described a prenyloxy-substituted indeno[1,2-b]indole (5-isopropyl-4-(3-methylbut-2-enyloxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p)) as a very potent inhibitor of CK2 holoenzyme (IC50 = 25 nM). Here, we report the broad-spectrum anticancer activity of 4p and provide substantial progress on its pharmacokinetic properties. Using a cell-based CK2 activity assay and live-cell imaging of cultured A431, A549, and LNCaP cancer cell lines, cellular CK2 target engagement was shown as well as strong antiproliferative, anti-migratory and apoptosis-inducing effects of 4p. Furthermore, evidence was found for the ability of 4p to disrupt A549 spheroid cohesion. A series of LC-MS/MS experiments revealed high and rapid cellular uptake (intracellular concentration is approximately 5 µM after 1 h incubation) and low metabolic stability of 4p. These results point to the value of 4p as a potent CK2 inhibitor with promising anticancer activities and should trigger future medicinal chemistry efforts to improve the drug-like properties of this compound.

3.
Sci Rep ; 11(1): 1788, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469044

RESUMO

The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Indóis/química , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 211: 113017, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223263

RESUMO

Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,ß-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised. Homo-dimerization shifted the inhibition efficacy from sub-micromolar to nanomolar range, correlated with the presence of 5a, linked by a 2-6 methylene-long linker. Non-toxic, the best dimers displayed a therapeutic ratio as high as 70,000. It has been found that the high potency of the best compound 7b that displays a KI of 17 nM is due to an uncompetitive behavior toward mitoxantrone efflux and specific for that drug, compared to Hoechst 33342 efflux. Such property may be useful to target such anticancer drug efflux mediated by ABCG2. Finally, at a molecular level, an uncompetitive mechanism by which substrate promotes inhibitor binding implies that at least 2 ligands should bind simultaneously to the drug-binding pocket of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/síntese química , Indóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade
5.
ACS Omega ; 4(3): 5471-5478, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31559376

RESUMO

CK2α and CK2α' are the two isoforms of the catalytic subunit of human protein kinase CK2, an important target for cancer therapy. They have similar, albeit not identical functional and structural properties, and were occasionally reported to be inhibited with distinct efficacies by certain ATP-competitive ligands. Here, we present THN27, an indeno[1,2-b]indole derivative, as a further inhibitor with basal isoform selectivity. The selectivity disappears when measured using CK2α/CK2α' complexes with CK2ß, the regulatory CK2 subunit. Co-crystal structures of THN27 with CK2α and CK2α' reveal that subtle differences in the conformational variability of the interdomain hinge region are correlated with the observed effect. In the case of CK2α', a crystallographically problematic protein so far, this comparative structural analysis required the development of an experimental strategy that finally enables atomic resolution structure determinations with ab initio phasing of potentially any ATP-competitive CK2 inhibitor and possibly many non-ATP-competitive ligands as well bound to CK2α'.

6.
Molecules ; 25(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888043

RESUMO

Casein kinase II (CK2) is an intensively studied enzyme, involved in different diseases, cancer in particular. Different scaffolds were used to develop inhibitors of this enzyme. Here, we report on the synthesis and biological evaluation of twenty phenolic, ketonic, and para-quinonic indeno[1,2-b]indole derivatives as CK2 inhibitors. The most active compounds were 5-isopropyl-1-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4h and 1,3-dibromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4w with identical IC50 values of 0.11 µM. Furthermore, the development of a QSAR model based on the structure of indeno[1,2-b]indoles was performed. This model was used to predict the activity of 25 compounds with naphtho[2,3-b]furan-4,9-dione derivatives, which were previously predicted as CK2 inhibitors via a molecular modeling approach. The activities of four naphtho[2,3-b]furan-4,9-dione derivatives were determined in vitro and one of them (N-isopentyl-2-methyl-4,9-dioxo-4,9-dihydronaphtho[2,3-b]furan-3-carboxamide) turned out to inhibit CK2 with an IC50 value of 2.33 µM. All four candidates were able to reduce the cell viability by more than 60% after 24 h of incubation using 10 µM.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Furanos/síntese química , Inibidores de Proteínas Quinases/síntese química , Caseína Quinase II/química , Sobrevivência Celular/efeitos dos fármacos , Furanos/química , Furanos/farmacologia , Humanos , Indóis/síntese química , Indóis/química , Concentração Inibidora 50 , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade
7.
Pharmaceuticals (Basel) ; 11(1)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373552

RESUMO

Since the approval of imatinib in 2001, kinase inhibitors have revolutionized cancer therapies. Inside this family of phosphotransferases, casein kinase 2 (CK2) is of great interest and numerous scaffolds have been investigated to design CK2 inhibitors. Recently, functionalized indeno[1,2-b]indoles have been revealed to have high potency against human cancer cell lines such as MCF-7 breast carcinoma and A-427 lung carcinoma. 4-Methoxy-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (THN7), identified as a potent inhibitor of CK2 (IC50 = 71 nM), was selected for an encapsulation study in order to evaluate its antiproliferative activity as THN7-loaded cyclodextrin nanoparticles. Four α-cyclodextrins (α-CDs) were selected to encapsulate THN7 and all experiments indicated that the nanoencapsulation of this CK2 inhibitor in α-CDs was successful. No additional surface-active agent was used during the nanoformulation process. Nanoparticles formed between THN7 and α-C6H13 amphiphilic derivative gave the best results in terms of encapsulation rate (% of associated drug = 35%), with a stability constant (K11) of 298 mol·L-1 and a size of 132 nm. Hemolytic activity of the four α-CDs was determined before the in cellulo evaluation and the α-C6H13 derivative gave the lowest value of hemolytic potency (HC50 = 1.93 mol·L-1). Only the THN7-loaded cyclodextrin nanoparticles showing less toxicity on human erythrocytes (α-C6H13, α-C8H17 and α-C4H9) were tested against A-427 cells. All drug-loaded nanoparticles caused more cytotoxicity against A-427 cells than THN7 alone. Based on these results, the use of amphiphilic CD nanoparticles could be considered as a drug delivery system for indeno[1,2-b]indoles, allowing an optimized bioavailability and offering perspectives for the in vivo development of CK2 inhibitors.

8.
Pharmaceuticals (Basel) ; 10(4)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236079

RESUMO

Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α', the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α', but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydro-gen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.

9.
Pharmaceuticals (Basel) ; 10(1)2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28075359

RESUMO

Protein kinase CK2, initially designated as casein kinase 2, is an ubiquitously expressed serine/threonine kinase. This enzyme, implicated in many cellular processes, is highly expressed and active in many tumor cells. A large number of compounds has been developed as inhibitors comprising different backbones. Beside others, structures with an indeno[1,2-b]indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors of human protein kinase CK2, we report here on the generation of common feature pharmacophore model to further explain the binding requirements for human CK2 inhibitors. Nine common chemical features of indeno[1,2-b]indole-type CK2 inhibitors were determined using MOE software (Chemical Computing Group, Montreal, Canada). This pharmacophore model was used for database mining with the aim to identify novel scaffolds for developing new potent and selective CK2 inhibitors. Using this strategy several structures were selected by searching inside the ZINC compound database. One of the selected compounds was bikaverin (6,11-dihydroxy-3,8-dimethoxy-1-methylbenzo[b]xanthene-7,10,12-trione), a natural compound which is produced by several kinds of fungi. This compound was tested on human recombinant CK2 and turned out to be an active inhibitor with an IC50 value of 1.24 µM.

10.
Drug Des Devel Ther ; 9: 3481-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170632

RESUMO

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Indenos/farmacologia , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Fenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indenos/síntese química , Indenos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Camundongos , Mitoxantrona/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células NIH 3T3 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Transfecção
11.
J Med Chem ; 58(1): 265-77, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25272055

RESUMO

A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Caseína Quinase II/antagonistas & inibidores , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Células MCF-7 , Mitoxantrona/metabolismo , Modelos Químicos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
12.
Int J Pharm ; 441(1-2): 491-8, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23154152

RESUMO

Casein Kinase 2 (CK2) is a ubiquitous kinase protein currently targeted for the treatment of some cancers. Recently, the series of indeno[1,2-b]indoles has revealed great interest as potent and selective CK(2) ATP-competitive inhibitors. Among them, 1-amino-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (CM1) was selected for an encapsulation study in order to improve its biodisponibility. Its complexation was evaluated at the molecular scale, with a series of fluorinated or hydrocarbonated amphiphilic cyclodextrins (CDs). Then the encapsulation of CM1 within CD nanoparticles at the supramolecular level was achieved. Nanoparticles formed between CM1 and hexakis[6-deoxy-6-(3-perfluorohexylpropanethio)-2,3-di-O-methyl]-α-cyclodextrin, a fluorinated amphiphilic α-cyclodextrin, gave the best results in terms of encapsulation rate, stability and drug release. These nanospheres showed an encapsulation efficiency of 65% and a sustained release of the entrapped drug over 3h. Based on these results, encapsulation within fluorinated amphiphilic CD nanoparticles could be considered as a potential drug delivery system for indenoindole-type CK2 inhibitors, allowing better biodisponibility and offering perspectives for tumor targeting development.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Indenos/administração & dosagem , Indóis/administração & dosagem , alfa-Ciclodextrinas/química , Preparações de Ação Retardada , Estabilidade de Medicamentos , Nanopartículas , Fatores de Tempo
13.
Mol Pharmacol ; 74(6): 1620-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18768386

RESUMO

Rebeccamycin is an indolocarbazole class inhibitor of topoisomerase I. In the course of structure-activity relationship studies on rebeccamycin derivatives, we have synthesized analogs with the sugar moiety attached to either one or both indole nitrogens. Some analogs, especially those with substitutions at the 6' position of the carbohydrate moiety, exhibit potent inhibitory activity toward checkpoint kinase 1 (Chk1), a kinase that has a major role in the G(2)/M checkpoint in response to DNA damage. Some of these compounds retained a genotoxic activity either through intercalation into the DNA and/or by topoisomerase I-mediated DNA cleavage. We explored the structure-activity relationship between these compounds and their multiple targets. These rebeccamycin derivatives represent a novel class of potential antitumor agents that have a dual effect and might selectively induce the death of cancer cells.


Assuntos
Antineoplásicos/química , Carbazóis/química , Dano ao DNA , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , DNA/química , Clivagem do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I
14.
Bioorg Med Chem ; 11(23): 4871-9, 2003 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-14604648

RESUMO

In the course of structure-activity relationship studies, new rebeccamycin derivatives substituted in 3,9-positions on the indolocarbazole framework, and a 2',3'-anhydro derivative were prepared by semi-synthesis from rebeccamycin. The antiproliferative activities against nine tumor cell lines were determined and the effect on the cell cycle of murine leukemia L1210 cells was examined. Their DNA binding properties and inhibitory properties toward topoisomerase I and three kinases PKCzeta, CDK1/cyclin B, CDK5/p25 and a phosphatase cdc25A were evaluated. The 3,9-dihydroxy derivative is the most efficient compound of this series toward CDK1/cyclin B and CDK5/p25. It is also characterized as a DNA binding topoisomerase I poison. Its broad spectrum of molecular activities likely accounts for its cytotoxic potential. This compound which displays a tumor cell line-selectivity may represent a new lead for subsequent drug design in this series of glycosylated indolocarbazoles.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbazóis/síntese química , Carbazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Fosfotransferases/antagonistas & inibidores , Inibidores da Topoisomerase I , Animais , Antineoplásicos/química , Carbazóis/química , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Indóis/química , Análise Espectral , Relação Estrutura-Atividade
15.
J Med Chem ; 46(4): 609-22, 2003 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-12570382

RESUMO

Rebeccamycin analogues containing one azaindole unit, with and without a methyl group on the imide nitrogen and with the sugar moiety coupled either to the indole nitrogen or to the azaindole nitrogen were synthesized. To increase the solubility and induce stronger interactions with the target macromolecules, a bromo or nitro substitutent was introduced on the indole unit. The DNA binding and topoisomerase I inhibition properties were investigated together with the antiproliferative activities toward nine tumor cell lines. In addition, the effect of the compounds on the cell cycle of L1210 leukemia cells was examined. The nonaza analogues were found to be cytotoxic against all cell lines of the panel whereas the aza-analogues showed a selective action toward certain cell lines. They strongly inhibited the proliferation of SK-N-MC neuroblastoma, A431 epidermoid carcinoma and NCI-H69 small cell lung carcinoma cells, but showed little or no cytotoxic effect against IGROV ovary carcinoma, HT29 colon carcinoma, and A549 non small cell lung carcinoma cells. Whatever their cytotoxicity profile, all compounds induce similar cell cycle effects, with a marked G2+M block observed with L1210 leukemia cells. The data suggest that the molecular mechanism of action of the aza-analogue derivatives is different from that of rebeccamycin.


Assuntos
Aminoglicosídeos , Antibacterianos/síntese química , Antineoplásicos/síntese química , Compostos Aza/síntese química , Carbazóis , Indóis/síntese química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Aza/química , Compostos Aza/farmacologia , Ciclo Celular/efeitos dos fármacos , DNA/química , DNA Topoisomerases Tipo I/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Indóis/farmacologia , Camundongos , Relação Estrutura-Atividade , Inibidores da Topoisomerase I , Células Tumorais Cultivadas
16.
Bioorg Med Chem ; 11(5): 679-87, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12537997

RESUMO

As a part of structure-activity relationship studies on rebeccamycin analogues, compounds containing two aza-indole moieties were synthesized bearing either a methyl group or a hydrogen atom on the imide nitrogen. The azaindole substructures were expected to enhance the cytotoxicity toward tumor cell lines through stronger hydrogen bonding with the target enzyme(s). The cytotoxicities of compounds 8, 10 and 19 against a panel of tumor cell lines were examined and compared with those of rebeccamycin, dechlorinated rebeccamycin 2 and N-methylated analogue A. Their effect on the L1210 cell cycle was also evaluated. Compound 19, having an imide NH function had the strongest cytotoxicity towards L1210 cells and induced the largest accumulation of cells in the G2+M phases of the cell cycle. In contrast to their non-aza analogues, which were cytotoxic for all the cell lines tested, diaza compounds 10 and 19 showed selectivity for some cell lines.


Assuntos
Aminoglicosídeos , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/farmacologia , Carbazóis , Indóis/síntese química , Indóis/farmacologia , Monossacarídeos/síntese química , Monossacarídeos/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Leucemia L1210/tratamento farmacológico , Leucemia L1210/patologia , Espectroscopia de Ressonância Magnética , Camundongos , Compostos de Amônio Quaternário , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Eur J Med Chem ; 37(5): 435-40, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12008058

RESUMO

In the course of structure-activity relationships on rebeccamycin analogues, two dimers of dechlorinated rebeccamycin were synthesised with the aim to improve the interaction with DNA and in vitro antiproliferative activities. The synthesis of two dimeric compounds obtained by joining two molecules of dechlorinated rebeccamycin via the imide nitrogen is described. Melting temperature and DNase I footprinting studies were performed to investigate their interaction with DNA. Four tumour cell lines, murine L1210 leukaemia, human HT29 colon carcinoma, A549 non-small cell lung carcinoma and K-562 leukaemia, were used to evaluate the cytotoxicity of the drugs. Their effects on the cell cycle of L1210 cells were also investigated.


Assuntos
Aminoglicosídeos , Antibacterianos/síntese química , Carbazóis , Cloro/química , DNA/metabolismo , Indóis , Antibacterianos/química , Antibacterianos/farmacologia , Divisão Celular/efeitos dos fármacos , Pegada de DNA , Dimerização , Humanos , Inibidores da Topoisomerase I , Células Tumorais Cultivadas
18.
J Med Chem ; 45(6): 1330-9, 2002 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11882002

RESUMO

The synthesis of new rebeccamycin derivatives, in which the carbohydrate moiety is attached to both indole nitrogens, is described. The newly synthesized compounds were tested for their abilities to block the cell cycle of murine leukemia L1210 cells and their in vitro antiproliferative activities against four tumor cell lines (murine L1210 leukemia and human HT29 colon carcinoma, A549 non-small-cell lung carcinoma, K-562 leukemia). Their biological activities are compared with those of the parent compound rebeccamycin. Some of the new compounds exhibit potent antiproliferative activities, either against the four cell lines or mostly the two leukemias (L1210 and K-562 cell lines). The 3,9-diformyl analogue 9 was selective toward L1210 cells, whereas the 3,9-dibromo 16 was strongly cytotoxic toward the four cell lines tested. Nonselective compound 16 and 3,9-dinitro 13, which exhibited selectivity toward leukemia tumor cell lines, were selected for in-depth evaluation, including in vivo experiments.


Assuntos
Aminoglicosídeos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbazóis/síntese química , Carbazóis/farmacologia , Indóis/síntese química , Indóis/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Animais , Antibacterianos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29/efeitos dos fármacos , Humanos , Células K562/efeitos dos fármacos , Leucemia L1210/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Células Tumorais Cultivadas
19.
Eur J Med Chem ; 37(12): 925-32, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12660017

RESUMO

In the course of a medicinal chemistry program aimed at discovering novel tumour-active rebeccamycin derivatives targeting DNA and/or topoisomerase I, a series of analogues with the sugar residue linked to the two indole nitrogens was recently developed. Two promising drug candidates in this staurosporine-rebeccamycin hybrid series were selected for a DNA-binding study reported here. The DNA interaction of the cationic indolocarbazole glycosides MP059 bearing a N,N-diethylaminoethyl side chain and MP072 containing a sugar bearing an amino group was compared with that of the uncharged analogue MP024. The results show that the addition of a cationic substituent, either directly on the indolocarbazole chromophore or on the carbohydrate residue, significantly reinforces the interaction of the drugs with nucleic acids. The two cationic molecules MP059 and MP072 recognise preferentially sequences containing GpT.ApC and TpG.CpA steps but they do not inhibit topoisomerase I, in contrast to the parent uncharged derivative MP024 which stimulates DNA single strand breaks by topoisomerase I. The cytotoxic activity of the indolocarbazole derivatives bearing positively charged groups is one order of magnitude higher than that of the neutral compound MP024. The high cytotoxic potential can be attributed to the enhanced DNA binding and sequence recognition capacity of the cationic compounds. The study provides useful information for further structure-activity relationship studies in the indolocarbazole series.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Carbazóis/metabolismo , Carbazóis/farmacologia , DNA/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Animais , Antineoplásicos/química , Sequência de Bases , Carbazóis/química , Bovinos , Dano ao DNA/efeitos dos fármacos , Pegada de DNA , Desoxirribonuclease I/metabolismo , Humanos , Indóis/química , Dados de Sequência Molecular , Especificidade por Substrato , Inibidores da Topoisomerase I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA