Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38251021

RESUMO

Biochar (BC) boasts diverse environmental applications. However, its potential for environmental biomonitoring has, surprisingly, remained largely unexplored. This study presents a preliminary analysis of BC's potential as a biomonitor for the environmental availability of ionic Cd, utilizing the lichen Evernia prunastri (L.) Ach. as a reference organism. For this purpose, the lichen E. prunastri and two types of wood-derived biochar, biochar 1 (BC1) and biochar 2 (BC2), obtained from two anonymous producers, were investigated for their ability to accumulate, or sequester and subsequently release, Cd when exposed to Cd-depleted conditions. Samples of lichen and biochar (fractions between 2 and 4 mm) were soaked for 1 h in a solution containing deionized water (control), 10 µM, and 100 µM Cd2+ (accumulation phase). Then, 50% of the treated samples were soaked for 24 h in deionized water (depuration phase). The lichen showed a very good ability to adsorb ionic Cd, higher than the two biochar samples (more than 46.5%), and a weak ability to release the metal (ca. 6%). As compared to the lichen, BC2 showed a lower capacity for Cd accumulation (-48%) and release (ca. 3%). BC1, on the other hand, showed a slightly higher Cd accumulation capacity than BC2 (+3.6%), but a release capacity similar to that of the lichen (ca. 5%). The surface area and the cation exchange capacity of the organism and the tested materials seem to play a key role in their ability to accumulate and sequester Cd, respectively. This study suggests the potential use of BC as a (bio)monitor for the presence of PTEs in atmospheric depositions and, perhaps, water bodies.

2.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446460

RESUMO

Research on the effects of engineered nanomaterials (ENMs) on mitochondria, which represent one of the main actors in cell function, highlighted effects on ROS production, gametogenesis and organellar genome replication. Specifically, the mitochondrial effects of cadmium sulfide quantum dots (CdS QDs) exposure can be observed through the variation in enzymatic kinetics at the level of the respiratory chain and also by analyzing modifications of reagent and products in term of the bonds created and disrupted during the reactions through Fourier-transform infrared spectroscopy (FTIR). This study investigated both in intact cells and in isolated mitochondria to observe the response to CdS QDs treatment at the level of electron transport chain in the wild-type yeast Saccharomyces cerevisiae and in the deletion mutant Δtom5, whose function is implicated in nucleo-mitochondrial protein trafficking. The changes observed in wild type and Δtom5 strains in terms of an increase or decrease in enzymatic activity (ranging between 1 and 2 folds) also differed according to the genetic background of the strains and the respiratory chain functionality during the CdS QDs treatment performed. Results were confirmed by FTIR, where a clear difference between the QD effects in the wild type and in the mutant strain, Δtom5, was observed. The utilization of these genetic and biochemical approaches is instrumental to clarify the mitochondrial mechanisms implicated in response to these types of ENMs and to the stress response that follows the exposure.

3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555489

RESUMO

The work focused on the analysis of two cultivars of tomato (Solanum lycopersicum L.), Aragon and Gladis, under two different treatments of silicon, Low, 2 L of 0.1 mM CaSiO3, and High, 0.5 mM CaSiO3, weekly, for 8 weeks, under stress-free conditions. We subsequently analyzed the morphology, chemical composition, and elemental distribution using synchrotron-based µ-XRF techniques, physiological, and molecular aspects of the response of the two cultivars. The scope of the study was to highlight any significant response of the plants to the Si treatments, in comparison with any response to Si of plants under stress. The results demonstrated that the response was mainly cultivar-dependent, also at the level of mitochondrial-dependent oxidative stress, and that it did not differ from the two conditions of treatments. With Si deposited mainly in the cell walls of the cells of fruits, leaves, and roots, the treatments did not elicit many significant changes from the point of view of the total elemental content, the physiological parameters that measured the oxidative stress, and the transcriptomic analyses focalized on genes related to the response to Si. We observed a priming effect of the treatment on the most responsive cultivar, Aragon, in respect to future stress, while in Gladis the Si treatment did not significantly change the measured parameters.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Silício/farmacologia , Síncrotrons , Estresse Oxidativo , Perfilação da Expressão Gênica
4.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808044

RESUMO

In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.

5.
Environ Sci Pollut Res Int ; 29(20): 29314-29331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34661843

RESUMO

The ability of tobacco (Nicotiana tabacum L. cv. Badischer Geudertheimer) for phytomanaging and remediating soil ecological functions at a contaminated site was assessed with a potted soil series made by fading an uncontaminated sandy soil with a contaminated sandy soil from the Borifer brownfield site, Bordeaux, SW France, at the 0%, 25%, 50%, 75%, and 100% addition rates. Activities of sandblasting and painting with metal-based paints occurred for decades at this urban brownfield, polluting the soil with metal(loid)s and organic contaminants, e.g., polycyclic aromatic hydrocarbons, in addition to past backfilling. Total topsoil metal(loid)s (e.g., 54,700 mg Zn and 5060 mg Cu kg-1) exceeded by seven- to tenfold the background values for French sandy soils, but the soil pH was 7.9, and overall, the 1M NH4NO3 extractable soil fractions of metals were relatively low. Leaf area, water content of shoots, and total chlorophyll (Chl) progressively decreased with the soil contamination, but the Chl fluorescence remained constant near its optimum value. Foliar Cu and Zn concentrations varied from 17.8 ± 4.2 (0%) to 27 ± 5 mg Cu kg-1 (100%) and from 60 ± 15 (0%) to 454 ± 53 mg Zn kg-1 (100%), respectively. Foliar Cd concentration peaked up to 1.74 ± 0.09 mg Cd kg-1, and its bioconcentration factor had the highest value (0.2) among those of the metal(loid)s. Few nutrient concentrations in the aboveground plant parts decreased with the soil contamination, e.g., foliar P concentration from 5972 ± 1026 (0%) to 2861 ± 334 mg kg-1 (100%). Vulnerability to drought-induced embolism (P50) did not differ for the tobacco stems across the soil series, whereas their hydraulic efficiency (Ks) declined significantly with increasing soil contamination. Overall, this tobacco cultivar grew relatively well even in the Borifer soil (100%), keeping its photosynthetic system healthy under stress, and contaminant exposure did not increase the vulnerability of the vascular system to drought. This tobacco had a relevant potential to annually phytoextract a part of the bioavailable soil Zn and Cd, i.e., shoot removals representing here 8.8% for Zn and 43.3% for Cd of their 1M NH4NO3 extractable amount in the potted Borifer soil.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Nicotiana
6.
Nanomaterials (Basel) ; 11(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804515

RESUMO

In previous work, two independent Arabidopsis thaliana Ac/Ds transposon insertional mutant lines, atnp01 and atnp02, were identified that showed a higher level of tolerance than the wild type (wt) line to cadmium sulfide quantum dots (CdS QDs). The tolerance response was characterized at physiological, genetic and transcriptomic levels. In this work, a comparative analysis was performed on protein extracts from plantlets of the two mutants and of wt, each treated with 80 mg L-1 CdS QDs. A comparative protein analysis was performed by 2D-PAGE, and proteins were characterized by MALDI-TOF/TOF mass spectrometry. Of 250 proteins identified from all three lines, 98 showed significant changes in relative abundance between control and CdS QD-treated plantlets. The wt, atnp01, and atnp02 control-treated pairs respectively showed 61, 31, and 31 proteins with differential expression. The two mutants had a different response to treatment in terms of type and quantity of up- and downregulated proteins. This difference became more striking when compared to wt. A network analysis of the proteins differentially expressed in atnp01 and atnp02 included several of those encoded by putative genes accommodating the transposons, which were responsible for regulation of some proteins identified in this study. These included nifu-like protein 3 (Nfu3), involved in chloroplast assembly, elongator complex 3 (Elo3), involved in transcriptional elongation, magnesium-chelate subunit-2 (Chli2), involved in chlorophyll biosynthesis, and protein phosphatase 2C (PP2C) which mediates abiotic stress response.

7.
Mar Drugs ; 18(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823602

RESUMO

The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.


Assuntos
Organismos Aquáticos/química , Alimentos , Peptídeos/farmacologia , Animais , Humanos , Peptídeos/química , Peptídeos/isolamento & purificação , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade
8.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580447

RESUMO

The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.

9.
Data Brief ; 30: 105636, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32426426

RESUMO

The data included in this paper are associated with a research article entitled 'Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd' [1]. The article concerns the use of miRNAs as biomarkers for engineered nanomaterials (ENMs) risk assessment. Two different type of human cells, HepG2 and THP-1, were exposed to different forms of Cadmium: nanoscale, as CdS quantum dots (CdS QDs), and ionic, as CdSO4 8/3 -hydrate (Cd(II)). The cells were treated with sub-toxic doses of CdS QDs; 3 µg ml-1 in HepG2 and 6.4 µg ml-1 and 50 µg ml-1 in THP-1, as well as equivalent cadmium doses as Cd(II). In this dataset, changes in expression levels of miRNAs are reported. In addition, GO enrichment analyses of target genes of miRNAs modulated by Cd stress, network analysis of the microRNome and an in silico pathway analysis are also reported. These data enhance and also summarize much of the data independently presented in the research article and therefore, must be considered as supplementary.

10.
J Hazard Mater ; 393: 122430, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155524

RESUMO

Cadmium is toxic to humans, although Cd-based quantum dots exerts less toxicity. Human hepatocellular carcinoma cells (HepG2) and macrophages (THP-1) were exposed to ionic Cd, Cd(II), and cadmium sulfide quantum dots (CdS QDs), and cell viability, cell integrity, Cd accumulation, mitochondrial function and miRNome profile were evaluated. Cell-type and Cd form-specific responses were found: CdS QDs affected cell viability more in HepG2 than in THP-1; respective IC20 values were ∼3 and ∼50 µg ml-1. In both cell types, Cd(II) exerted greater effects on viability. Mitochondrial membrane function in HepG2 cells was reduced 70 % with 40 µg ml-1 CdS QDs but was totally inhibited by Cd(II) at corresponding amounts. In THP-1 cells, CdS QDs has less effect on mitochondrial function; 50 µg ml-1 CdS QDs or equivalent Cd(II) caused 30 % reduction or total inhibition, respectively. The different in vitro effects of CdS QDs were unrelated to Cd uptake, which was greater in THP-1 cells. For both cell types, changes in the expression of miRNAs (miR-222, miR-181a, miR-142-3p, miR-15) were found with CdS QDs, which may be used as biomarkers of hazard nanomaterial exposure. The cell-specific miRNome profiles were indicative of a more conservative autophagic response in THP-1 and as apoptosis as in HepG2.


Assuntos
Compostos de Cádmio/toxicidade , Cádmio/toxicidade , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Mitocôndrias/fisiologia , Células THP-1
11.
Chemosphere ; 240: 124856, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31568945

RESUMO

The differential mechanisms of CdS QDs (Quantum Dots) and Cd ion toxicity to Arabidopsis thaliana (L.) Heynh were investigated. Plants were exposed to 40 and 60 mg L-1 for CdS QDs and 76.9 and 115.2 mg L-1 CdSO4·7H2O and toxicity was evaluated at 5, 20, 35 (T5, T20, T35) days after exposure. Oxidative stress upon exposure was evaluated by biochemical essays targeting non-enzymatic oxidative stress physiological parameters, including respiration efficiency, total chlorophylls, carotenoids, ABTS and DPPH radicals reduction, total phenolics, GSH redox state, lipid peroxidation. Total Cd in plants was measured with AAS. Root and leaf morphology and element content were assessed in vivo utilizing low-vacuum Environmental Scanning Electron Microscopy (ESEM) with X-ray microanalysis (EDX). This integrated approach allowed identification of unique nanoscale CdS QDs toxicity to the plants that was distinct from CdSO4 exposure. The analyses highlighted that CdS QDs and Cd ions effects are modulated by the developmental stage of the plant, starting from T20 till T35 the plant development was modulated by the treatments, in particular CdS QDs induced early flowering. Both treatments induced Fe accumulation in roots, but at different intensities, while CdS QDs was associated with Mn increase into plant leaf. CdSO4 elicited higher levels of oxidative stress compared with QDs, especially the former treatment caused more intense respiration damages and reduction in chlorophyll and carotenoids than the latter. The two types of treatments impact differently on root and leaf morphology.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Cádmio/farmacocinética , Cádmio/toxicidade , Clorofila/metabolismo , Microanálise por Sonda Eletrônica , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas , Pontos Quânticos/química
12.
Nanomaterials (Basel) ; 9(4)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986968

RESUMO

The aim of this work was to use the yeast Saccharomyces cerevisiae as a tool for toxicogenomic studies of Engineered Nanomaterials (ENMs) risk assessment, in particular focusing on cadmium based quantum dots (CdS QDs). This model has been exploited for its peculiar features: a short replication time, growth on both fermentable and oxidizable carbon sources, and for the contextual availability of genome wide information in the form of genetic maps, DNA microarray, and collections of barcoded mutants. The comparison of the whole genome analysis with the microarray experiments (99.9% coverage) and with the phenotypic analysis of 4688 barcoded haploid mutants (80.2% coverage), shed light on the genes involved in the response to CdS QDs, both in vivo and in vitro. The results have clarified the mechanisms involved in the exposure to CdS QDs, and whether these ENMs and Cd2+ exploited different pathways of response, in particular related to oxidative stress and to the maintenance of mitochondrial integrity and function. Saccharomyces cerevisiae remains a versatile and robust alternative for organismal toxicological studies, with a high level of heuristic insights into the toxicology of more complex eukaryotes, including mammals.

13.
Data Brief ; 11: 72-97, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28138507

RESUMO

The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

14.
J Hazard Mater ; 324(Pt B): 744-752, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27890358

RESUMO

Cell sensitivity to quantum dots (QDs) has been attributed to a cascade triggered by oxidative stress leading to apoptosis. The role and function of mitochondria in animal cells are well understood but little information is available on the complex genetic networks that regulate nucleo-mitochondrial interaction. The effect of CdS QD exposure in yeast Saccharomyces cerevisiae was assessed under conditions of limited lethality (<10%), using cell physiological and morphological endpoints. Whole-genomic array analysis and the screening of a deletion mutant library were also carried out. The results showed that QDs: increased the level of reactive oxygen species (ROS) and decreased the level of reduced vs oxidized glutathione (GSH/GSSG); reduced oxygen consumption and the abundance of respiratory cytochromes; disrupted mitochondrial membrane potentials and affected mitochondrial morphology. Exposure affected the capacity of cells to grow on galactose, which requires nucleo-mitochondrial involvement. However, QDs exposure did not materially induce respiratory deficient (RD) mutants but only RD phenocopies. All of these cellular changes were correlated with several key nuclear genes, including TOM5 and FKS1, involved in the maintenance of mitochondrial organization and function. The consequences of these cellular effects are discussed in terms of dysregulation of cell function in response to these "pathological mitochondria".


Assuntos
Compostos de Cádmio/toxicidade , Núcleo Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Sulfetos/toxicidade , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Deleção de Genes , Genes Fúngicos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
15.
Toxicology ; 374: 18-28, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27866839

RESUMO

Interaction of living organisms with quantum dots (QDs) is certainly more focused on environment and occupational exposure associated with production and release or disposal. Here, the transcription of genes involved in mitochondrial organization and function in HepG2 cells exposed to cadmium sulphide (CdS) QDs has been profiled to highlight biomarkers of exposure and effect to be tested for other cadmium based QDs. At low concentrations, exposure to CdS QDs induced only minor damage to nuclear DNA, and none to mitochondrial DNA. However, the stress caused an increase in the production of reactive oxygen species (ROS), which triggered the mitochondria-mediated intrinsic apoptotic pathway involving a cascade of transcriptomic events, finally prompting the activation of a rescue pathway. The transcriptomic analysis confirmed the involvement in the response to CdS QDs of genes related to apoptosis (AIFM2 and APAF1), oxidative stress response (OXR1 and AOX1) and autophagy (ATG3 and ATG7), as potential biomarkers. Other possible biomarkers specific for mitochondria function were LONP1 and HSPD1.


Assuntos
Compostos de Cádmio/toxicidade , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores , Núcleo Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Glutationa/metabolismo , Células Hep G2 , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
16.
J Proteomics ; 147: 140-155, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27079980

RESUMO

UNLABELLED: A literature survey covering the presence of bioactive peptides in plant-derived foodstuffs is presented. Examples are given of plant peptides associated with a beneficial effect on human health. The main bioactive effects of these peptides are defined and their mechanism of action described, when known. Current understanding of the way in which these molecules are adsorbed, distributed, metabolized and finally excreted is discussed. A particular focus is given to potentially immunomodulatory peptides. The leading analytical assay methods used to evaluate their activity are outlined. Inspection of crop proteomic data revealed that at least 6000 proteins may harbour bioactive peptides. The analysis of these proteins using a Gene Ontology approach has provided a number of insights regarding their occurrence and relevance. BIOLOGICAL SIGNIFICANCE: The review reports an updated survey on bioactive peptides present in food crop plants, with a particular focus on immunomodulatory peptides which might be relevant for therapeutic applications. It employs a bioinformatic approach to search for proteins of crop plants potentially harboring bioactive peptides, summarising through Gene Ontology the main classes of peptide-containing proteins in food.


Assuntos
Peptídeos/análise , Proteínas de Plantas/química , Imunomodulação , Peptídeos/uso terapêutico , Plantas Comestíveis/química
17.
Front Plant Sci ; 6: 1104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26732871

RESUMO

A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment.

18.
Chemosphere ; 93(7): 1333-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23981839

RESUMO

Poplar (Populus) species are seen as candidates for removing heavy metal contamination from polluted soil. A bottom-up multidisciplinary approach was utilized to compare the performances of clones 58-861 and Poli (Populus nigra) and A4A, a Populus nigra × Populus deltoides hybrid to Cd toxicity. Qualitative and quantitative differences in their tolerance to Cd exposure and the uptake, accumulation and translocation of Cd were noted following the hydroponic exposure of rooted cuttings to 20 µM CdSO4 for either 48 h or 14 d. Cadmium was less toxic for the hybrid clone A4A as compared to Poli and 58-861. Cd uptake and root to shoot translocation were determined by AAS, and its compartmentation was analyzed using SEM/EDX. A comparative proteomic approach was utilized to identify changes in proteins expression according to dose and time of exposure. Toxicity to Cd mainly influenced proteins related to general defense, stress response and carbohydrate metabolism.


Assuntos
Cádmio/toxicidade , Populus/fisiologia , Proteoma/metabolismo , Poluentes do Solo/toxicidade , Fotossíntese , Proteômica , Estresse Fisiológico
19.
Environ Sci Technol ; 45(10): 4497-505, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21491876

RESUMO

Species within the genus Populus include potential phytoextractors of heavy metal ions from contaminated soils, and genetic markers predictive of performance would be a useful tool for selection and breeding. Here, we have identified sequence variation within seven target and three nontarget genes among a set of 11 Populus spp. clones. Sequence variants were present in both the coding and noncoding regions; the former can potentially affect the functionality of the target genes. At the same time, the effect of exposure of the clones to cadmium ions on the morphology and the distribution of various metal ions was investigated by scanning electron microscopy microanalysis. A positive correlation was established between genetic variation, cadmium accumulation, and its bioconcentration in the root.


Assuntos
Cádmio/toxicidade , Polimorfismo de Nucleotídeo Único , Populus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Clonagem de Organismos , Expressão Gênica/efeitos dos fármacos , Genes de Plantas/genética , Fenótipo , Populus/genética , Populus/metabolismo
20.
Environ Pollut ; 159(2): 474-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21109337

RESUMO

Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochar's surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochar's surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd.


Assuntos
Arsênio/química , Cádmio/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Zinco/química , Adsorção , Solubilidade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA