Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169416, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123091

RESUMO

Previous studies consistently showed an association between fine atmospheric particulate matter (PM2.5) and cardiovascular diseases. Concerns about adverse health effects of ultrafine particles (UFP) are growing but long-term studies are still scarce. In this study, we examined the association between long-term exposure to ambient air pollutants and blood biomarkers of inflammation and coagulation, including fibrinogen, high-sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA) adiponectin and interleukin-6 (IL-6), measured in the German KORA-S4 cohort study (1999-2001). IL-6 was available for older participants only, who were therefore considered as a subsample. Annual mean concentrations of UFP (as particle number concentration), particulate matter in different particles sizes (PM10, PMcoarse, PM2.5, PM2.5 absorbance), ozone (O3), and nitrogen oxides (NO2, NOX) were estimated by land-use regression models and assigned to participants' home addresses. We performed a multiple linear regression between each pollutant and each biomarker with adjustment for confounders. Per 1 interquartile range (IQR, 1945 particles/cm3) increase of UFP, fibrinogen increased by 0.70 % (0.04; 1.37) and hs-CRP increased by 3.16 % (-0.52; 6.98). Adiponectin decreased by -2.53 % (-4.78; -0.24) per 1 IQR (1.4 µg/m3) increase of PM2.5. Besides, PM2.5 was associated with increased IL-6 in the subsample. In conclusion, we observed that long-term exposure to air pollutants, including both fine and ultrafine particles, was associated with higher concentrations of pro-inflammatory and lower concentrations of an anti-inflammatory blood biomarkers, which is consistent with an increased risk for cardiovascular disease observed for long-term exposure to air pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Humanos , Proteína C-Reativa/metabolismo , Estudos de Coortes , Adiponectina , Interleucina-6 , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Biomarcadores , Fibrinogênio , Dióxido de Nitrogênio
2.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446460

RESUMO

Research on the effects of engineered nanomaterials (ENMs) on mitochondria, which represent one of the main actors in cell function, highlighted effects on ROS production, gametogenesis and organellar genome replication. Specifically, the mitochondrial effects of cadmium sulfide quantum dots (CdS QDs) exposure can be observed through the variation in enzymatic kinetics at the level of the respiratory chain and also by analyzing modifications of reagent and products in term of the bonds created and disrupted during the reactions through Fourier-transform infrared spectroscopy (FTIR). This study investigated both in intact cells and in isolated mitochondria to observe the response to CdS QDs treatment at the level of electron transport chain in the wild-type yeast Saccharomyces cerevisiae and in the deletion mutant Δtom5, whose function is implicated in nucleo-mitochondrial protein trafficking. The changes observed in wild type and Δtom5 strains in terms of an increase or decrease in enzymatic activity (ranging between 1 and 2 folds) also differed according to the genetic background of the strains and the respiratory chain functionality during the CdS QDs treatment performed. Results were confirmed by FTIR, where a clear difference between the QD effects in the wild type and in the mutant strain, Δtom5, was observed. The utilization of these genetic and biochemical approaches is instrumental to clarify the mitochondrial mechanisms implicated in response to these types of ENMs and to the stress response that follows the exposure.

3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555489

RESUMO

The work focused on the analysis of two cultivars of tomato (Solanum lycopersicum L.), Aragon and Gladis, under two different treatments of silicon, Low, 2 L of 0.1 mM CaSiO3, and High, 0.5 mM CaSiO3, weekly, for 8 weeks, under stress-free conditions. We subsequently analyzed the morphology, chemical composition, and elemental distribution using synchrotron-based µ-XRF techniques, physiological, and molecular aspects of the response of the two cultivars. The scope of the study was to highlight any significant response of the plants to the Si treatments, in comparison with any response to Si of plants under stress. The results demonstrated that the response was mainly cultivar-dependent, also at the level of mitochondrial-dependent oxidative stress, and that it did not differ from the two conditions of treatments. With Si deposited mainly in the cell walls of the cells of fruits, leaves, and roots, the treatments did not elicit many significant changes from the point of view of the total elemental content, the physiological parameters that measured the oxidative stress, and the transcriptomic analyses focalized on genes related to the response to Si. We observed a priming effect of the treatment on the most responsive cultivar, Aragon, in respect to future stress, while in Gladis the Si treatment did not significantly change the measured parameters.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Silício/farmacologia , Síncrotrons , Estresse Oxidativo , Perfilação da Expressão Gênica
4.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808044

RESUMO

In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.

5.
Acta Biomed ; 93(3): e2022133, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775757

RESUMO

BACKGROUND AND AIM: Cystic fibrosis (CF), is due to CF transmembrane conductance regulator (CFTR) loss of function, and is associated with comorbidities. The increasing longevity of CF patients has been associated with increased cancer risk besides the other known comorbidities. The significant heterogeneity among patients, suggests potential epigenetic regulation. Little attention has been given to how CFTR influences microRNA (miRNA) expression and how this may impact on biological processes and pathways. METHODS: We assessed the changes in miRNAs and subsequently identified the affected molecular pathways using CFBE41o-, and IB3 human immortalized cell lines since they reflect the most common genetic mutations in CF patients, and 16HBE14o- cells were used as controls. RESULTS: In the CF cell lines, 41 miRNAs showed significant changes (FC (log2) ≥ +2 or FC (log2) ≤ -2 and p-value≤0.05). Gene target analysis evidenced 511 validated miRNA target genes. Gene Ontology analysis evidenced cancer, inflammation, body growth, glucose, and lipid metabolism as the biological processes most impacted by these miRNAs. Protein-protein interaction and pathway analysis highlighted 50 significantly enriched pathways among which RAS, TGF beta, JAK/STAT and insulin signaling. CONCLUSIONS: CFTR loss of function is associated with changes in the miRNA network, which regulates genes involved in the major comorbidities that affect CF patients suggesting that further research is warranted.


Assuntos
Fenômenos Biológicos , Fibrose Cística , MicroRNAs , Neoplasias , Linhagem Celular , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epigênese Genética , Fertilidade , Glucose , Humanos , Inflamação/genética , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Neoplasias/complicações
6.
Peptides ; 148: 170696, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856531

RESUMO

Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.


Assuntos
Descoberta de Drogas , Alimento Funcional , Imunomodulação , Peptídeos/farmacologia , Defensinas , Humanos , Proteínas de Plantas
7.
Nanomaterials (Basel) ; 11(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804515

RESUMO

In previous work, two independent Arabidopsis thaliana Ac/Ds transposon insertional mutant lines, atnp01 and atnp02, were identified that showed a higher level of tolerance than the wild type (wt) line to cadmium sulfide quantum dots (CdS QDs). The tolerance response was characterized at physiological, genetic and transcriptomic levels. In this work, a comparative analysis was performed on protein extracts from plantlets of the two mutants and of wt, each treated with 80 mg L-1 CdS QDs. A comparative protein analysis was performed by 2D-PAGE, and proteins were characterized by MALDI-TOF/TOF mass spectrometry. Of 250 proteins identified from all three lines, 98 showed significant changes in relative abundance between control and CdS QD-treated plantlets. The wt, atnp01, and atnp02 control-treated pairs respectively showed 61, 31, and 31 proteins with differential expression. The two mutants had a different response to treatment in terms of type and quantity of up- and downregulated proteins. This difference became more striking when compared to wt. A network analysis of the proteins differentially expressed in atnp01 and atnp02 included several of those encoded by putative genes accommodating the transposons, which were responsible for regulation of some proteins identified in this study. These included nifu-like protein 3 (Nfu3), involved in chloroplast assembly, elongator complex 3 (Elo3), involved in transcriptional elongation, magnesium-chelate subunit-2 (Chli2), involved in chlorophyll biosynthesis, and protein phosphatase 2C (PP2C) which mediates abiotic stress response.

8.
Nutrients ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233787

RESUMO

The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.


Assuntos
Doença Celíaca/dietoterapia , Glutens/uso terapêutico , Triticum/química , Adolescente , Adulto , Idoso , Doença Celíaca/imunologia , Criança , Pré-Escolar , Dieta Livre de Glúten , Digestão , Feminino , Glutens/administração & dosagem , Humanos , Imunidade , Itália , Masculino , Pessoa de Meia-Idade , Peptídeos , Adulto Jovem
9.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580447

RESUMO

The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.

10.
Data Brief ; 30: 105636, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32426426

RESUMO

The data included in this paper are associated with a research article entitled 'Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd' [1]. The article concerns the use of miRNAs as biomarkers for engineered nanomaterials (ENMs) risk assessment. Two different type of human cells, HepG2 and THP-1, were exposed to different forms of Cadmium: nanoscale, as CdS quantum dots (CdS QDs), and ionic, as CdSO4 8/3 -hydrate (Cd(II)). The cells were treated with sub-toxic doses of CdS QDs; 3 µg ml-1 in HepG2 and 6.4 µg ml-1 and 50 µg ml-1 in THP-1, as well as equivalent cadmium doses as Cd(II). In this dataset, changes in expression levels of miRNAs are reported. In addition, GO enrichment analyses of target genes of miRNAs modulated by Cd stress, network analysis of the microRNome and an in silico pathway analysis are also reported. These data enhance and also summarize much of the data independently presented in the research article and therefore, must be considered as supplementary.

11.
Foods ; 9(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182868

RESUMO

Durum wheat is an important food source in Mediterranean countries, and Italy is the major producer of durum wheat in Europe. The quality of durum wheat flours depends on the type and amount of gluten proteins and starch while flour nutritional value rests on metabolite contents such as polyphenols. In this work, two Italian cultivars, Iride and Svevo, were analyzed for two years (2016-2017) in four Italian regions to explore how the environment affects: (i) reserve proteome; (ii) starch content and composition; and (iii) free, conjugated, bound phenolics and antioxidant capacity. The impact of environmental and meteorological conditions was significant for many traits. Regardless of the cultivation site, in 2017, a year with less rainfall and a higher temperature during grain filling, there was an increase in low molecular weight glutenins, in the glutenin/gliadin ratio and in the A-type starch granules size, all parameters of higher technological quality. In the same year, the cultivars showed higher amounts of polyphenols and antioxidant capacity. In conclusion, the two wheat cultivars, selected for their medium to high yield and their good quality, had higher performances in 2017 regardless of their sowing locations.

12.
J Hazard Mater ; 393: 122430, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155524

RESUMO

Cadmium is toxic to humans, although Cd-based quantum dots exerts less toxicity. Human hepatocellular carcinoma cells (HepG2) and macrophages (THP-1) were exposed to ionic Cd, Cd(II), and cadmium sulfide quantum dots (CdS QDs), and cell viability, cell integrity, Cd accumulation, mitochondrial function and miRNome profile were evaluated. Cell-type and Cd form-specific responses were found: CdS QDs affected cell viability more in HepG2 than in THP-1; respective IC20 values were ∼3 and ∼50 µg ml-1. In both cell types, Cd(II) exerted greater effects on viability. Mitochondrial membrane function in HepG2 cells was reduced 70 % with 40 µg ml-1 CdS QDs but was totally inhibited by Cd(II) at corresponding amounts. In THP-1 cells, CdS QDs has less effect on mitochondrial function; 50 µg ml-1 CdS QDs or equivalent Cd(II) caused 30 % reduction or total inhibition, respectively. The different in vitro effects of CdS QDs were unrelated to Cd uptake, which was greater in THP-1 cells. For both cell types, changes in the expression of miRNAs (miR-222, miR-181a, miR-142-3p, miR-15) were found with CdS QDs, which may be used as biomarkers of hazard nanomaterial exposure. The cell-specific miRNome profiles were indicative of a more conservative autophagic response in THP-1 and as apoptosis as in HepG2.


Assuntos
Compostos de Cádmio/toxicidade , Cádmio/toxicidade , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Mitocôndrias/fisiologia , Células THP-1
13.
Chemosphere ; 240: 124856, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31568945

RESUMO

The differential mechanisms of CdS QDs (Quantum Dots) and Cd ion toxicity to Arabidopsis thaliana (L.) Heynh were investigated. Plants were exposed to 40 and 60 mg L-1 for CdS QDs and 76.9 and 115.2 mg L-1 CdSO4·7H2O and toxicity was evaluated at 5, 20, 35 (T5, T20, T35) days after exposure. Oxidative stress upon exposure was evaluated by biochemical essays targeting non-enzymatic oxidative stress physiological parameters, including respiration efficiency, total chlorophylls, carotenoids, ABTS and DPPH radicals reduction, total phenolics, GSH redox state, lipid peroxidation. Total Cd in plants was measured with AAS. Root and leaf morphology and element content were assessed in vivo utilizing low-vacuum Environmental Scanning Electron Microscopy (ESEM) with X-ray microanalysis (EDX). This integrated approach allowed identification of unique nanoscale CdS QDs toxicity to the plants that was distinct from CdSO4 exposure. The analyses highlighted that CdS QDs and Cd ions effects are modulated by the developmental stage of the plant, starting from T20 till T35 the plant development was modulated by the treatments, in particular CdS QDs induced early flowering. Both treatments induced Fe accumulation in roots, but at different intensities, while CdS QDs was associated with Mn increase into plant leaf. CdSO4 elicited higher levels of oxidative stress compared with QDs, especially the former treatment caused more intense respiration damages and reduction in chlorophyll and carotenoids than the latter. The two types of treatments impact differently on root and leaf morphology.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Cádmio/farmacocinética , Cádmio/toxicidade , Clorofila/metabolismo , Microanálise por Sonda Eletrônica , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas , Pontos Quânticos/química
14.
Nanomaterials (Basel) ; 9(4)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986968

RESUMO

The aim of this work was to use the yeast Saccharomyces cerevisiae as a tool for toxicogenomic studies of Engineered Nanomaterials (ENMs) risk assessment, in particular focusing on cadmium based quantum dots (CdS QDs). This model has been exploited for its peculiar features: a short replication time, growth on both fermentable and oxidizable carbon sources, and for the contextual availability of genome wide information in the form of genetic maps, DNA microarray, and collections of barcoded mutants. The comparison of the whole genome analysis with the microarray experiments (99.9% coverage) and with the phenotypic analysis of 4688 barcoded haploid mutants (80.2% coverage), shed light on the genes involved in the response to CdS QDs, both in vivo and in vitro. The results have clarified the mechanisms involved in the exposure to CdS QDs, and whether these ENMs and Cd2+ exploited different pathways of response, in particular related to oxidative stress and to the maintenance of mitochondrial integrity and function. Saccharomyces cerevisiae remains a versatile and robust alternative for organismal toxicological studies, with a high level of heuristic insights into the toxicology of more complex eukaryotes, including mammals.

15.
Data Brief ; 11: 72-97, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28138507

RESUMO

The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

16.
J Hazard Mater ; 324(Pt B): 744-752, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27890358

RESUMO

Cell sensitivity to quantum dots (QDs) has been attributed to a cascade triggered by oxidative stress leading to apoptosis. The role and function of mitochondria in animal cells are well understood but little information is available on the complex genetic networks that regulate nucleo-mitochondrial interaction. The effect of CdS QD exposure in yeast Saccharomyces cerevisiae was assessed under conditions of limited lethality (<10%), using cell physiological and morphological endpoints. Whole-genomic array analysis and the screening of a deletion mutant library were also carried out. The results showed that QDs: increased the level of reactive oxygen species (ROS) and decreased the level of reduced vs oxidized glutathione (GSH/GSSG); reduced oxygen consumption and the abundance of respiratory cytochromes; disrupted mitochondrial membrane potentials and affected mitochondrial morphology. Exposure affected the capacity of cells to grow on galactose, which requires nucleo-mitochondrial involvement. However, QDs exposure did not materially induce respiratory deficient (RD) mutants but only RD phenocopies. All of these cellular changes were correlated with several key nuclear genes, including TOM5 and FKS1, involved in the maintenance of mitochondrial organization and function. The consequences of these cellular effects are discussed in terms of dysregulation of cell function in response to these "pathological mitochondria".


Assuntos
Compostos de Cádmio/toxicidade , Núcleo Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Sulfetos/toxicidade , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Deleção de Genes , Genes Fúngicos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
17.
Toxicology ; 374: 18-28, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27866839

RESUMO

Interaction of living organisms with quantum dots (QDs) is certainly more focused on environment and occupational exposure associated with production and release or disposal. Here, the transcription of genes involved in mitochondrial organization and function in HepG2 cells exposed to cadmium sulphide (CdS) QDs has been profiled to highlight biomarkers of exposure and effect to be tested for other cadmium based QDs. At low concentrations, exposure to CdS QDs induced only minor damage to nuclear DNA, and none to mitochondrial DNA. However, the stress caused an increase in the production of reactive oxygen species (ROS), which triggered the mitochondria-mediated intrinsic apoptotic pathway involving a cascade of transcriptomic events, finally prompting the activation of a rescue pathway. The transcriptomic analysis confirmed the involvement in the response to CdS QDs of genes related to apoptosis (AIFM2 and APAF1), oxidative stress response (OXR1 and AOX1) and autophagy (ATG3 and ATG7), as potential biomarkers. Other possible biomarkers specific for mitochondria function were LONP1 and HSPD1.


Assuntos
Compostos de Cádmio/toxicidade , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores , Núcleo Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Glutationa/metabolismo , Células Hep G2 , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
18.
J Clin Endocrinol Metab ; 101(12): 4955-4963, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27689251

RESUMO

CONTEXT: Cystic fibrosis-related diabetes (CFRD) is the most frequent and severe co-morbidity in cystic fibrosis (CF). Presentation and severity are quite variable. OBJECTIVE: To investigate changes in microRNAs (miRNAs) due to CF transmembrane conductance regulator malfunctioning in vitro, to study the circulating levels of selected miRNAs in serum samples from patients, and to assess their relationships in different age groups with genotype, glucose tolerance state, and at onset of CFRD. Design/Setting/Patients/Interventions: Transcriptional profiling of all known miRNAs in CFBE41o- cells, in their normal counterparts (16HBE14o- cells), and in IB3 cells was performed. A set of miRNAs was differentially expressed in the CF cells. By in silico analysis, four miRNAs (miR-146a, miR-155, miR-370, and miR-708) were selected as potential regulators of the FOXO1 gene. Seventy-four CF patients and 50 healthy subjects whose glucose tolerance was characterized by an oral glucose tolerance test were enrolled in the study, and the identified miRNAs were quantified in serum by quantitative RT-PCR. Main Outcome Measurements/Results: A total of 111 miRNAs were differentially expressed in the two CF cell lines. miR-155, miR-370, and miR-708 were up-regulated and miR-146a was down-regulated in vitro, whereas in vivo, miR-146a, miR-155, and miR-370 were up-regulated, and miR-708 was down-regulated. These changes showed relationships with genotype, glucose tolerance state, and onset of CFRD. CONCLUSIONS: The data showed significant changes in miRNAs dependent on genotype and glucose tolerance state in CF patients and highlighted some miRNAs of importance in CFRD at onset. miRNAs could explain some of the variability observed in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/sangue , Diabetes Mellitus/sangue , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Intolerância à Glucose/sangue , MicroRNAs/sangue , Adolescente , Adulto , Biomarcadores/sangue , Linhagem Celular , Criança , Fibrose Cística/complicações , Fibrose Cística/genética , Diabetes Mellitus/etiologia , Feminino , Intolerância à Glucose/etiologia , Humanos , Masculino , Adulto Jovem
19.
J Proteomics ; 147: 140-155, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27079980

RESUMO

UNLABELLED: A literature survey covering the presence of bioactive peptides in plant-derived foodstuffs is presented. Examples are given of plant peptides associated with a beneficial effect on human health. The main bioactive effects of these peptides are defined and their mechanism of action described, when known. Current understanding of the way in which these molecules are adsorbed, distributed, metabolized and finally excreted is discussed. A particular focus is given to potentially immunomodulatory peptides. The leading analytical assay methods used to evaluate their activity are outlined. Inspection of crop proteomic data revealed that at least 6000 proteins may harbour bioactive peptides. The analysis of these proteins using a Gene Ontology approach has provided a number of insights regarding their occurrence and relevance. BIOLOGICAL SIGNIFICANCE: The review reports an updated survey on bioactive peptides present in food crop plants, with a particular focus on immunomodulatory peptides which might be relevant for therapeutic applications. It employs a bioinformatic approach to search for proteins of crop plants potentially harboring bioactive peptides, summarising through Gene Ontology the main classes of peptide-containing proteins in food.


Assuntos
Peptídeos/análise , Proteínas de Plantas/química , Imunomodulação , Peptídeos/uso terapêutico , Plantas Comestíveis/química
20.
Chemosphere ; 145: 470-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26694798

RESUMO

A genome-wide screen of a haploid deletion library of bakers' yeast (Saccharomyces cerevisiae) was conducted to document the phenotypic and transcriptional impact of exposure to each of the two pharmaceutical products 5-fluorouracil (an anti-tumor agent) and nystatin (an anti-fungal agent). The combined data set was handled by applying a systems biology perspective. A Gene Ontology analysis identified functional categories previously characterized as likely targets for both compounds. Induced transcription profiles were well correlated in yeast and human HepG2 cells. The identified molecular targets for both compounds were used to suggest a small set of human orthologues as appropriate for testing on human material. The yeast system developed here (denoted "Toxichip") has likely utility for identifying biomarkers relevant for health and environmental risk assessment applications required as part of the development process for novel pharmaceuticals.


Assuntos
Antifúngicos/toxicidade , Antineoplásicos/toxicidade , Fluoruracila/toxicidade , Nistatina/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Testes de Toxicidade/métodos , Biomarcadores , Humanos , Medição de Risco , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA