Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Biomed Opt ; 28(4): 040501, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37091910

RESUMO

Significance: Current white light colonoscopy suffers from many limitations that allow 22% to 32% of preneoplastic lesions to remain undetected. This high number of false negatives contributes to the appearance of interval malignancies, defined as neoplasms diagnosed between screening colonoscopies at a rate of 2% to 6%. Aim: The shortcomings of today's white light-based colorectal cancer screening are addressed by colonoscopic fluorescence imaging of preneoplastic lesions using targeted fluorescent agents to enhance contrast between the lesion and the surrounding normal colonic epithelium. Approach: We describe the development of Pluronic® nanoparticles of fluorocoxib A (FA), a fluorescent cyclooxygenase-2 (COX-2) inhibitor that enables targeted imaging of inflammation and cancer in numerous animal models, for endoscopic florescence imaging of colonic adenomas. Results: We formulated FA, a fluorescent COX-2 inhibitor, or fluorocoxib negative control (FNC), a nontargeted fluorophore and a negative control for FA, in micellar nanoparticles of FDA approved Pluronic tri-block co-polymer using a bulk solvent evaporation method. This afforded FA-loaded micellar nanoparticles (FA-NPs) or FNC-loaded micellar nanoparticles (FNC-NPs) with the hydrodynamic diameters ( D h ) of 45.7 ± 2.5 nm and 44.9 ± 3.8 nm and the zeta potentials ( ζ ) of - 1.47 ± 0.3 mV and - 1.64 ± 0.5 mV , respectively. We intravenously injected B6;129 mice bearing colonic adenomas induced by azoxymethane and dextran-sodium sulfate with FA-loaded Pluronic nanoparticles (FA-NPs). The diffusion-mediated local FA release and its binding to COX-2 enzyme allowed for clear detection of adenomas with high signal-to-noise ratios. The COX-2 targeted delivery and tumor retention were validated by negligible tumor fluorescence detected upon colonoscopic imaging of adenoma-bearing mice injected with Pluronic nanoparticles of FNC or of animals predosed with the COX-2 inhibitor, celecoxib, followed by intravenous dosing of FA-NPs. Conclusions: These results demonstrate that the formulation of FA in Pluronic nanoparticles overcomes a significant hurdle to its clinical development for early detection of colorectal neoplasms by fluorescence endoscopy.


Assuntos
Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Nanopartículas , Camundongos , Animais , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2/metabolismo , Poloxâmero , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Colonoscopia/métodos , Corantes Fluorescentes , Imagem Óptica/métodos , Adenoma/induzido quimicamente , Adenoma/diagnóstico por imagem
2.
ACS Chem Biol ; 18(2): 404-418, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638351

RESUMO

Necrostatin-1 blocks ferroptosis via an unknown mechanism and necroptosis through inhibition of receptor-interacting protein kinase-1 (RIP1). We report that necrostatin-1 suppresses cyclooxygenase-2-dependent prostaglandin biosynthesis in lipopolysaccharide-treated RAW264.7 macrophages (IC50 ∼ 100 µM). This activity is shared by necrostatin-1i (IC50 ∼ 50 µM), which lacks RIP1 inhibitory activity, but not the RIP1 inhibitors necrostatin-1s or deschloronecrostatin-1s. Furthermore, we show that the potent ferroptosis inhibitors and related compounds ferrostatin-1, phenoxazine, phenothiazine, and 10-methylphenothiazine strongly inhibit cellular prostaglandin biosynthesis with IC50's in the range of 30 nM to 3.5 µM. None of the compounds inhibit lipopolysaccharide-mediated cyclooxygenase-2 protein induction. In the presence of activating hydroperoxides, the necrostatins and ferroptosis inhibitors range from low potency inhibition to stimulation of in vitro cyclooxygenase-2 activity; however, inhibitory potency is increased under conditions of low peroxide tone. The ferroptosis inhibitors are highly effective reducing substrates for cyclooxygenase-2's peroxidase activity, suggesting that they act by suppressing hydroperoxide-mediated activation of the cyclooxygenase active site. In contrast, for the necrostatins, cellular prostaglandin synthesis inhibition does not correlate with peroxidase-reducing activity but rather with the presence of a thiohydantoin substituent, which conveys the ability to reduce the endoperoxide intermediate prostaglandin H2 to prostaglandin F2α in vitro. This finding suggests that necrostatin-1 blocks cellular prostaglandin synthesis and ferroptosis via a redox mechanism distinct from action as a one-electron donor. The results indicate that a wide range of compounds derived from redox-active chemical scaffolds can block cellular prostaglandin biosynthesis.


Assuntos
Ferroptose , Lipopolissacarídeos , Ciclo-Oxigenase 2 , Lipopolissacarídeos/farmacologia , Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Prostaglandinas , Macrófagos/metabolismo
3.
ACS Chem Biol ; 17(7): 1714-1722, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35786843

RESUMO

Cyclooxygenase-2 (COX-2) expression is up-regulated in inflammatory tissues and many premalignant and malignant tumors. Assessment of COX-2 protein in vivo, therefore, promises to be a powerful strategy to distinguish pathologic cells from normal cells in a complex disease setting. Herein, we report the first redox-activatable COX-2 probe, fluorocoxib Q (FQ), for in vivo molecular imaging of pathogenesis. FQ inhibits COX-2 selectively in purified enzyme and cell-based assays. FQ exhibits extremely low fluorescence and displays time- and concentration-dependent fluorescence enhancement upon exposure to a redox environment. FQ enters the cells freely and binds to the COX-2 enzyme. FQ exhibits high circulation half-life and metabolic stability sufficient for target site accumulation and demonstrates COX-2-targeted uptake and retention in cancer cells and pathologic tissues. Once taken up, it undergoes redox-mediated transformation into a fluorescent compound fluorocoxib Q-H that results in high signal-to-noise contrast and differentiates pathologic tissues from non-pathologic tissues for real-time in vivo imaging.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Neoplasias , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Corantes Fluorescentes/química , Oxirredução
4.
Addict Biol ; 27(4): e13183, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754107

RESUMO

Attenuating enzymatic degradation of endocannabinoids (eCBs) by fatty acid amide hydrolase (FAAH) reduces cannabis withdrawal symptoms in preclinical and clinical studies. In mice, blocking cyclooxygenase-2 (COX-2) activity increases central eCB levels by inhibiting fatty acid degradation. This placebo-controlled study examined the effects of the FDA-approved COX-2 selective inhibitor, celecoxib, on cannabis withdrawal, 'relapse', and circulating eCBs in a human laboratory model of cannabis use disorder. Daily, nontreatment-seeking cannabis smokers (12M, 3F) completed a crossover study comprising two 11-day study phases (separated by >14 days for medication clearance). In each phase, the effects of daily BID placebo (0 mg) or celecoxib (200 mg) on cannabis (5.3% THC) intoxication, withdrawal symptoms (4 days of inactive cannabis self-administration) and 'relapse' (3 days of active cannabis self-administration following abstinence) were assessed. Outcome measures included mood, cannabis self-administration, sleep, food intake, cognitive performance, tobacco cigarette use and circulating eCBs and related lipids. Under placebo maintenance, cannabis abstinence produced characteristic withdrawal symptoms (negative mood, anorexia and dreaming) relative to cannabis administration and was associated with increased OEA (a substrate of FAAH) and oleic acid (metabolite of OEA), with no change in eCB levels. Compared to placebo, celecoxib improved subjective (but not objective) measures of sleep and did not affect mood or plasma levels of eCBs or associated lipids and increased cannabis craving. The overall absence of effects on cannabis withdrawal symptoms, self-administration or circulating eCBs relative to placebo, combined with an increase in cannabis craving, suggests celecoxib does not show promise as a potential pharmacotherapy for CUD.


Assuntos
Cannabis , Abuso de Maconha , Síndrome de Abstinência a Substâncias , Agonistas de Receptores de Canabinoides , Celecoxib/uso terapêutico , Estudos Cross-Over , Ciclo-Oxigenase 2/uso terapêutico , Dronabinol , Endocanabinoides , Humanos , Abuso de Maconha/psicologia , Recidiva , Fumantes , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia
5.
Brain ; 145(1): 179-193, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35136958

RESUMO

Traumatic brain injury is an important risk factor for development of Alzheimer's disease and dementia. Unfortunately, no effective therapies are currently available for prevention and treatment of the traumatic brain injury-induced Alzheimer's disease-like neurodegenerative disease. This is largely due to our limited understanding of the mechanisms underlying traumatic brain injury-induced neuropathology. Previous studies showed that pharmacological inhibition of monoacylglycerol lipase, a key enzyme degrading the endocannabinoid 2-arachidonoylglycerol, attenuates traumatic brain injury-induced neuropathology. However, the mechanism responsible for the neuroprotective effects produced by inhibition of monoacylglycerol lipase in traumatic brain injury remains unclear. Here we first show that genetic deletion of monoacylglycerol lipase reduces neuropathology and averts synaptic and cognitive declines in mice exposed to repeated mild closed head injury. Surprisingly, these neuroprotective effects result primarily from inhibition of 2-arachidonoylglycerol metabolism in astrocytes, rather than in neurons. Single-cell RNA-sequencing data reveal that astrocytic monoacylglycerol lipase knockout mice display greater resilience to traumatic brain injury-induced changes in expression of genes associated with inflammation or maintenance of brain homeostasis in astrocytes and microglia. The monoacylglycerol lipase inactivation-produced neuroprotection is abrogated by deletion of the cannabinoid receptor-1 or by adeno-associated virus vector-mediated silencing of astrocytic peroxisome proliferator-activated receptor-γ. This is further supported by the fact that overexpression of peroxisome proliferator-activated receptor-γ in astrocytes prevents traumatic brain injury-induced neuropathology and impairments in spatial learning and memory. Our results reveal a previously undefined cell type-specific role of 2-arachidonoylglycerol metabolism and signalling pathways in traumatic brain injury-induced neuropathology, suggesting that enhanced 2-arachidonoylglycerol signalling in astrocytes is responsible for the monoacylglycerol lipase inactivation-produced alleviation of neuropathology and deficits in synaptic and cognitive functions in traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neurodegenerativas , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Endocanabinoides/farmacologia , Humanos , Camundongos , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Doenças Neurodegenerativas/metabolismo
6.
Oncogene ; 41(10): 1518-1525, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031771

RESUMO

Metastatic outgrowth is supported by metabolic adaptations that may differ from the primary tumor of origin. However, it is unknown if such adaptations are therapeutically actionable. Here we report a novel aminopyridine compound that targets a unique Phosphogluconate Dehydrogenase (PGD)-dependent metabolic adaptation in distant metastases from pancreatic cancer patients. Compared to structurally similar analogs, 6-aminopicolamine (6AP) potently and selectively reversed PGD-dependent metastatic properties, including intrinsic tumorigenic capacity, excess glucose consumption, and global histone hyperacetylation. 6AP acted as a water-soluble prodrug that was converted into intracellular bioactive metabolites that inhibited PGD in vitro, and 6AP monotherapy demonstrated anti-metastatic efficacy with minimal toxicity in vivo. Collectively, these studies identify 6AP and possibly other 6-aminopyridines as well-tolerated prodrugs with selectivity for metastatic pancreatic cancers. If unique metabolic adaptations are a common feature of metastatic or otherwise aggressive human malignancies, then such dependencies could provide a largely untapped pool of druggable targets for patients with advanced cancers.


Assuntos
Neoplasias Pancreáticas , Pró-Fármacos , Aminopiridinas , Carcinogênese , Histonas , Humanos , Neoplasias Pancreáticas/patologia , Fosfogluconato Desidrogenase , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
7.
Gut ; 70(3): 555-566, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32641470

RESUMO

OBJECTIVE: Patients with Lynch syndrome (LS) are at markedly increased risk for colorectal cancer. It is being increasingly recognised that the immune system plays an essential role in LS tumour development, thus making an ideal target for cancer prevention. Our objective was to evaluate the safety, assess the activity and discover novel molecular pathways involved in the activity of naproxen as primary and secondary chemoprevention in patients with LS. DESIGN: We conducted a Phase Ib, placebo-controlled, randomised clinical trial of two dose levels of naproxen sodium (440 and 220 mg) administered daily for 6 months to 80 participants with LS, and a co-clinical trial using a genetically engineered mouse model of LS and patient-derived organoids (PDOs). RESULTS: Overall, the total number of adverse events was not different across treatment arms with excellent tolerance of the intervention. The level of prostaglandin E2 in the colorectal mucosa was significantly decreased after treatment with naproxen when compared with placebo. Naproxen activated different resident immune cell types without any increase in lymphoid cellularity, and changed the expression patterns of the intestinal crypt towards epithelial differentiation and stem cell regulation. Naproxen demonstrated robust chemopreventive activity in a mouse co-clinical trial and gene expression profiles induced by naproxen in humans showed perfect discrimination of mice specimens with LS and PDOs treated with naproxen and control. CONCLUSIONS: Naproxen is a promising strategy for immune interception in LS. We have discovered naproxen-induced gene expression profiles for their potential use as predictive biomarkers of drug activity. TRIAL REGISTRATION NUMBER: gov Identifier: NCT02052908.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Quimioprevenção , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Naproxeno/farmacologia , Adulto , Idoso , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Naproxeno/administração & dosagem
8.
ACS Med Chem Lett ; 11(10): 1837-1842, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062161

RESUMO

Overexpression of cyclooxygenase-1 (COX-1) is associated with the initiation and progression of ovarian cancer, and targeted imaging of COX-1 is a promising strategy for early detection of this disease. We report the discovery of N-[(5-carboxy-X-rhodaminyl)but-4-yl]-3-(1-(4-methoxyphenyl)-5-(p-tolyl)-1H-pyrazol-3-yl)propenamide (CMP) as the first COX-1-targeted optical agent for imaging of ovarian cancer. CMP exhibits light emission at 604 nm (λmax), thereby minimizing tissue autofluorescence interference. In both purified enzyme and COX-1-expressing human ovarian adenocarcinoma (OVCAR-3) cells, CMP inhibits COX-1 at low nanomolar potencies (IC50 = 94 and 44 nM, respectively). CMP's selective binding to COX-1 in OVCAR-3 cells was visualized microscopically as intense intracellular fluorescence. In vivo optical imaging of xenografts in athymic nude mice revealed COX-1-dependent accumulation of CMP in COX-1-expressing mouse ovarian surface epithelial carcinoma (ID8-NGL) and OVCAR-3 cells. These results establish proof-of-principle for the feasibility of targeting COX-1 in the development of new imaging and therapeutic strategies for ovarian cancer.

9.
ACS Med Chem Lett ; 11(10): 1875-1880, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062167

RESUMO

Clinical imaging approaches to detect inflammatory biomarkers, such as cyclooxygenase-2 (COX-2), may facilitate the diagnosis and therapy of inflammatory diseases. To this end, we report the discovery of N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide chloride salt (fluorocoxib D), a hydrophilic analog of fluorocoxib A. Fluorocoxib D inhibits COX-2 selectively in purified enzyme preparations and cells. It exhibits adequate photophysical properties to enable detection of COX-2 in intact cells, in a mouse model of carrageenan-induced acute footpad inflammation and inflammation in a mouse model of osteoarthritis. COX-2-selectivity was verified either by blocking the enzyme's active site with celecoxib or by molecular imaging with nontargeted 5-carboxy-X-rhodamine dye. These data indicate that fluorocoxib D is an ideal candidate for early detection of inflammatory or neoplastic lesions expressing elevated levels of COX-2.

10.
J Biomed Opt ; 25(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32860356

RESUMO

SIGNIFICANCE: Fluorocoxib D, N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, is a water-soluble optical imaging agent to detect cyclooxygenase-2 (COX-2)-expressing cancer cells. AIM: We evaluated the pharmacokinetic and safety properties of fluorocoxib D and its ability to detect cancer cells in vitro and in vivo. APPROACH: Pharmacokinetic parameters of fluorocoxib D were assessed from plasma collected at designated time points after intravenous administration of 1 mg / kg fluorocoxib D in six research dogs using a high-performance liquid chromatography analysis. Safety of fluorocoxib D was assessed for 3 days after its administration using physical assessment, complete blood count, serum chemistry profile, and complete urinalysis in six research dogs. The ability of fluorocoxib D to detect COX-2-expressing cancer cells was performed using human 5637 cells in vitro and during rhinoscopy evaluation of specific fluorocoxib D uptake by canine cancer cells in vivo. RESULTS: No evidence of toxicity and no clinically relevant adverse events were noted in dogs. Peak concentration of fluorocoxib D (114.8 ± 50.5 ng / ml) was detected in plasma collected at 0.5 h after its administration. Pretreatment of celecoxib blocked specific uptake of fluorocoxib D in COX-2-expressing human 5637 cancer cells. Fluorocoxib D uptake was detected in histology-confirmed COX-2-expressing head and neck cancer during rhinoscopy in a client-owned dog in vivo. Specific tumor-to-normal tissue ratio of detected fluorocoxib D signal was in an average of 3.7 ± 0.9 using Image J analysis. CONCLUSIONS: Our results suggest that fluorocoxib D is a safe optical imaging agent used for detection of COX-2-expressing cancers and their margins during image-guided minimally invasive biopsy and surgical procedures.


Assuntos
Antineoplásicos , Neoplasias , Animais , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Cães , Neoplasias/diagnóstico por imagem , Imagem Óptica
11.
Chem Rev ; 120(15): 7592-7641, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32609495

RESUMO

Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Prostaglandina-Endoperóxido Sintases/química , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Domínio Catalítico , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Artigo em Inglês | MEDLINE | ID: mdl-31585632

RESUMO

Bruce Ames has had an enormous impact on human health by developing facile methods for the identification of mutagens. This research also provided important insights into the relationship between mutagenesis and carcinogenesis. Bruce is a highly innovative and creative individual who has followed his interests across disciplines into diverse fields of inquiry. The present author had the pleasure of spending a sabbatical in the Ames lab and utilized the Ames test in multiple aspects of his research. He describes both in this honorific to Bruce on the occasion of his 90th birthday.


Assuntos
Bioquímica/história , Genética/história , Testes de Mutagenicidade/história , Ativação Metabólica , Animais , California , História do Século XX , História do Século XXI , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Mutagênese , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Ratos , Ratos Sprague-Dawley , Salmonella/efeitos dos fármacos , Salmonella/genética
13.
Eur J Med Chem ; 179: 16-25, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229884

RESUMO

Biomarkers of specific targets are becoming an essential objective for clinical unmet clinical needs to improve diseases early detection and increase patient overall survival. Ovarian cancer is among the highest mortality gynecological cancers. It is asymptomatic and almost always diagnosed at advanced stage. At five years from the first diagnosis the survival rate of ovarian cancer patients is only 30%. Cyclooxygenase (COX)-1 as opposed to COX-2 is known to be overexpressed in ovarian cancer. Therefore, fluorescent probes targeting COX-1 were designed and prepared in fair to good yields for its quantitatively detection in human ovarian cancer cell lines (OVCAR-3 and SKOV-3). In particular, both cytofluorimetric and immunofluorescent experiments showed that N-[4-(9-dimethylimino-9H-benzo[a]phenoxazin-5-ylamino)butyl]-2-(3,4-bis(4-methoxyphenyl)isoxazol-5-yl)acetamide chloride (11) enters into OVCAR-3 cells and is mainly localized on the membrane containing the COX-1. Membrane fluorescence emission represents about 80% of the total fluorescence measured in the whole cell, while the non-specific labeling represents only 20%. This result indicates that the intensity of fluorescence emission is almost exclusively attributable to 11 bound to COX-1 located on the membrane. Furthermore, no diffusion inside the cell occurs. IC50hCOX-1 value of 11 determined by measuring the O2 consumption during the bis-oxygenation of the arachidonic acid catalysed by COX-1 was found to be equal to 1.8 nM. Furthermore, 11 inhibits oCOX-1 with IC50 = 6.85 nM and mCOX-2 with IC50 = 269.5 nM; the corresponding selectivity index SI is equal to 39.3 against oCOX-1. 11 inhibits oCOX-1 at 0 min of incubation with 91% inhibition, whereas in the same time it does not inhibit mCOX-2. Fingerprints for Ligands and Proteins (FLAP) software calculations were performed to justify 11 higher COX-1 inhibitory potency than mofezolac (COX-1 IC50 = 5.1 nM), which in turn is a moiety of 11. Specifically, the two compounds bind differently in the COX-1 active site.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Corantes Fluorescentes/farmacologia , Isoxazóis/farmacologia , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Feminino , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Relação Estrutura-Atividade
14.
ACS Omega ; 4(5): 9251-9261, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31172046

RESUMO

In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.

15.
J Biol Chem ; 294(22): 8690-8698, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31000626

RESUMO

Many indomethacin amides and esters are cyclooxygenase-2 (COX-2)-selective inhibitors, providing a framework for the design of COX-2-targeted imaging and cancer chemotherapeutic agents. Although previous studies have suggested that the amide or ester moiety of these inhibitors binds in the lobby region, a spacious alcove within the enzyme's membrane-binding domain, structural details have been lacking. Here, we present observations on the crystal complexes of COX-2 with two indomethacin-dansyl conjugates (compounds 1 and 2) at 2.22-Å resolution. Both compounds are COX-2-selective inhibitors with IC50 values of 0.76 and 0.17 µm, respectively. Our results confirmed that the dansyl moiety is localized in and establishes hydrophobic interactions and several hydrogen bonds with the lobby of the membrane-binding domain. We noted that in both crystal structures, the linker tethering indomethacin to the dansyl moiety passes through the constriction at the mouth of the COX-2 active site, resulting in displacement and disorder of Arg-120, located at the opening to the active site. Both compounds exhibited higher inhibitory potency against a COX-2 R120A variant than against the WT enzyme. Inhibition kinetics of compound 2 were similar to those of the indomethacin parent compound against WT COX-2, and the R120A substitution reduced the time dependence of COX inhibition. These results provide a structural basis for the further design and optimization of conjugated COX reagents for imaging of malignant or inflammatory tissues containing high COX-2 levels.


Assuntos
Domínio Catalítico , Membrana Celular/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Compostos de Dansil/química , Indometacina/química , Animais , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Fluorescência , Concentração Inibidora 50 , Cinética , Camundongos , Modelos Moleculares , Fatores de Tempo
16.
J Ovarian Res ; 11(1): 17, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482584

RESUMO

BACKGROUND: High cyclooxygenase (COX)-2 expression in ovarian tumors has been associated with poor prognosis, but the role of COX-1 expression and its relation to survival is less clear. Here, we evaluated COX expression and associations with survival outcomes between type I (clear cell, mucinous, low grade endometrioid and low grade serous) and type II (high grade serous and high grade endometrioid) ovarian tumors. METHODS: We developed and validated a new COX-1 antibody, and conducted immunohistochemical (IHC) staining for COX-1 and COX-2 on a tissue microarray (TMA) of 190 primary ovarian tumors. In addition to standard IHC scoring and H-scores to combine the percentage of positive cells and staining intensity, we also measured COX-1 and COX-2 mRNA expression by QPCR. High expression was defined as greater than or equal to median values. Clinical characteristics and disease outcomes were ascertained from medical records. Associations with disease-free survival (DFS) and overall survival (OS) were quantified by hazard ratios (HRs) and confidence intervals (CIs) from proportional hazards regression. RESULTS: Type I tumors had high COX-2 expression, while type II tumors had high COX-1 expression. In multivariable adjusted regression models, higher COX-1 mRNA expression was associated with shorter DFS (HR: 6.37, 95% CI: 1.84-22.01) and OS (HR: 2.26, 95% CI: 1.04-4.91), while higher H-scores for COX-2 expression were associated with shorter DFS (HR: 1.92, 95% CI: 1.06-3.49). Stratified analysis indicated that COX-2 was significantly associated with DFS among cases with Type II tumors (HR: 1.93, 95% CI: 1.06-3.53). CONCLUSIONS: These findings suggest that ovarian tumor type contributes to differences in COX expression levels and associations with survival.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Prostaglandina-Endoperóxido Sintases/genética , Idoso , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Prognóstico , Modelos de Riscos Proporcionais
17.
Sci Rep ; 7(1): 2380, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539604

RESUMO

Cyclooxygenase-2 catalyses the biosynthesis of prostaglandins from arachidonic acid but also the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. Previous studies identified PG-Gs as signalling molecules involved in inflammation. Thus, the glyceryl ester of prostaglandin E2, PGE2-G, mobilizes Ca2+ and activates protein kinase C and ERK, suggesting the involvement of a G protein-coupled receptor (GPCR). To identify the endogenous receptor for PGE2-G, we performed a subtractive screening approach where mRNA from PGE2-G response-positive and -negative cell lines was subjected to transcriptome-wide RNA sequencing analysis. We found several GPCRs that are only expressed in the PGE2-G responder cell lines. Using a set of functional readouts in heterologous and endogenous expression systems, we identified the UDP receptor P2Y6 as the specific target of PGE2-G. We show that PGE2-G and UDP are both agonists at P2Y6, but they activate the receptor with extremely different EC50 values of ~1 pM and ~50 nM, respectively. The identification of the PGE2-G/P2Y6 pair uncovers the signalling mode of PG-Gs as previously under-appreciated products of cyclooxygenase-2.


Assuntos
Dinoprostona/análogos & derivados , Agonistas Purinérgicos/química , Receptores Purinérgicos P2/química , Transcriptoma , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Dinoprostona/química , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Agonistas Purinérgicos/metabolismo , Células RAW 264.7 , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Especificidade por Substrato , Termodinâmica
18.
Anal Chem ; 89(2): 1299-1306, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27982582

RESUMO

Post-translational modifications (PTMs) affect protein function, localization, and stability, yet very little is known about the ratios of these modifications. Here, we describe a novel method to quantitate and assess the relative stoichiometry of Lys and Arg modifications (QuARKMod) in complex biological settings. We demonstrate the versatility of this platform in monitoring recombinant protein modification of peptide substrates, PTMs of individual histones, and the relative abundance of these PTMs as a function of subcellular location. Lastly, we describe a product ion scanning technique that offers the potential to discover unexpected and possibly novel Lys and Arg modifications. In summary, this approach yields accurate quantitation and discovery of protein PTMs in complex biological systems without the requirement of high mass accuracy instrumentation.


Assuntos
Arginina/análise , Cromatografia Líquida de Alta Pressão/métodos , Histonas/química , Lisina/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Células HEK293 , Humanos , Hidrólise , Histona Desmetilases com o Domínio Jumonji/química , Proteínas Recombinantes/química
19.
Chem Res Toxicol ; 30(2): 635-641, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27978618

RESUMO

Rapidly proliferating cells require an increased rate of metabolism to allow for the production of nucleic acids, amino acids, and lipids. Pyruvate kinase catalyzes the final step in the glycolysis pathway, and different isoforms display vastly different catalytic efficiencies. The M2 isoform of pyruvate kinase (PKM2) is strongly expressed in cancer cells and contributes to aerobic glycolysis in what is commonly termed the Warburg effect. Here, we show that PKM2 is covalently modified by the lipid electrophiles 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). HNE and ONE modify multiple sites on PKM2 in vitro, including Cys424 and His439, which play a role in protein-protein interactions and fructose 1,6-bis-phosphate binding, respectively. Modification of these sites results in a dose-dependent decrease in enzymatic activity. In addition, high concentrations of the electrophile, most notably in the case of ONE, result in substantial protein-protein cross-linking in vitro and in cells. Exposure of RKO cells to electrophiles results in modification of monomeric PKM2 in a dose-dependent manner. There is a concomitant decrease in PKM2 activity in cells upon ONE exposure, but not HNE exposure. Together, our data suggest that modification of PKM2 by certain electrophiles results in kinase inactivation.


Assuntos
Aldeídos/farmacologia , Inibidores Enzimáticos/farmacologia , Cetonas/farmacologia , Piruvato Quinase/antagonistas & inibidores , Linhagem Celular Tumoral , Cromatografia Líquida , Química Click , Humanos , Piruvato Quinase/metabolismo , Espectrometria de Massas em Tandem
20.
ACS Chem Biol ; 11(11): 3052-3060, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27588346

RESUMO

Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anticancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2's allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2 but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Cinética , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA