Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605156

RESUMO

This work demonstrates the dynamic potential for tailoring the surface plasmon resonance (SPR), size, and shapes of gold nanoparticles (AuNPs) starting from an Au(I) precursor, chloro(dimethyl sulfide)gold (I) (Au(Me2S)Cl), in lieu of the conventional Au(III) precursor hydrogen tetrachloroaurate (III) hydrate (HAuCl4). Our approach presents a one-step method that permits regulation of an Au(I) precursor to form either visible-absorbing gold nanospheres or near-infrared-window (NIRW)-absorbing anisotropic AuNPs. A collection of shapes is obtained for the NIR-absorbing AuNPs herein, giving rise to spontaneously formed nanomosaic (NIR-absorbing anisotropic gold nanomosaic, NIRAuNM) without a dominant geometry for the tesserae elements that comprise the mosaic. Nonetheless, NIRAuNM exhibited high stability; one test sample remains stable with the same SPR absorption profile 7 years post-synthesis thus far. These NIRAuNM are generated within thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) microgels, without the addition of any growth-assisting surfactants or reducing agents. Our directed-selection methodology is based on the photochemical reduction of a light-, heat-, and water-sensitive Au(I) precursor via a disproportionation mechanism. The NIRAuNM stabilized within the thermoresponsive microgels demonstrates a light-activated size decrease of the microgels. On irradiation with a NIR lamp source, the percent decrease in the size of the microgels loaded with NIRAuNM is at least five times greater compared to the control microgels. The concept of photothermal shrinkage of hybrid microgels is further demonstrated by the release of a model luminescent dye, as a drug release model. The absorbance and emission of the model dye released from the hybrid microgels are over an order of magnitude higher compared to the absorbance and emission of the dye released from the unloaded-control microgels.

2.
Environ Sci Pollut Res Int ; 25(6): 5412-5420, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29209978

RESUMO

Silver nanoparticle-aided enhancement in the anti-corrosion potential and stability of plant extract as ecologically benign alternative for microbially induced corrosion treatment is demonstrated. Bioengineered silver nanoparticles (AgNPs) surface functionalized with plant extract material (proteinacious) was generated in vitro in a test tube by treating ionic AgNO3 with the leaf extract of Azadirachta indica that acted as dual reducing as well as stabilizing agent. Purity and crystallinity of the AgNPs, along with physical and surface characterizations, were evaluated by performing transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectra, single-area electron diffractions, zeta potential, and dynamic light scattering measurements. Anti-corrosion studies against mild steel (MS1010) by corrosion-inducive bacterium, Bacillus thuringiensis EN2 isolated from cooling towers, were evaluated by performing electrochemical impedance spectroscopy (EIS), weight loss analysis, and surface analysis by infrared spectroscopy. Our studies revealed that AgNPs profoundly inhibited the biofilm on MS1010 surface and reduced the corrosion rates with the CR of 0.5 mm/y and an inhibition efficiency of 77% when compared to plant extract alone with a CR of 2.2 mm/y and an inhibition efficiency of 52%. Further surface analysis by infrared spectra revealed that AgNPs formed a protective layer of self-assembled film on the surface of MS1010. Additionally, EIS and surface analysis revealed that the AgNPs have inhibited the bacterial biofilm and reduced the pit on MS1010. This is the first report disclosing the application of bioengineered AgNP formulations as potent anti-corrosive inhibitor upon forming a protective layer over mild steel in cooling water towers. Graphical Abstract ᅟ.


Assuntos
Antibacterianos/química , Bioengenharia/métodos , Nanopartículas Metálicas/química , Compostos de Prata/química , Aço/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Azadirachta/química , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Corrosão , Nanopartículas Metálicas/ultraestrutura , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA