Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 18(20): 5296-5299, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27700117

RESUMO

An efficient domino reaction combining different classes of pericyclic reactions leads to chiral complex polycyclic indoline-based architectures from achiral starting materials under mild conditions. This practical method is based on the ability of iron(III) chloride to promote both 4π electrocyclizations of 2,4-dienals and the C2-C3 umpolung of N-acetylindoles during the dearomative (3 + 2) cycloadditions.

2.
Am J Clin Nutr ; 103(2): 348-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26702120

RESUMO

BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.


Assuntos
Metabolismo dos Carboidratos , Carboidratos da Dieta/metabolismo , Frutose/metabolismo , Atividade Motora , Adulto , Ciclismo , Biomarcadores/análise , Biomarcadores/sangue , Glicemia/análise , Glicemia/metabolismo , Testes Respiratórios , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Estudos Cross-Over , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/efeitos adversos , Frutose/administração & dosagem , Frutose/efeitos adversos , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/química , Lipoproteínas VLDL/metabolismo , Masculino , Oxirredução , Ácido Palmítico/sangue , Ácido Palmítico/metabolismo , Período Pós-Prandial , Comportamento Sedentário , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA