Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 29(4): 586-596.e4, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34699747

RESUMO

Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.


Assuntos
Anti-Inflamatórios , Citocinas , Citocinas/metabolismo , Imunidade Inata , Imunomodulação , Engenharia de Proteínas
2.
Sci Signal ; 14(681)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947796

RESUMO

The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gßγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gßγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Neoplasias , PTEN Fosfo-Hidrolase , Proteínas rac1 de Ligação ao GTP , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Mutação , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
PLoS One ; 10(7): e0131308, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147851

RESUMO

Ly49 receptors can be peptide selective in their recognition of MHC-I-peptide complexes, affording them a level of discrimination beyond detecting the presence or absence of specific MHC-I allele products. Despite this ability, little is understood regarding the properties that enable some peptides, when bound to MHC-I molecules, to support Ly49 recognition, but not others. Using RMA-S target cells expressing MHC-I molecules loaded with individual peptides and effector cells expressing the ectodomain of the inhibitory Ly49C receptor, we found that two adjacent amino acid residues, P2 and P3, both buried in the peptide binding groove of H-2Kb, determine mouse Ly49C specificity. If both are aliphatic residues, this is supportive. Whereas, small amino acids at P2 and aromatic amino acids at the P3 auxiliary anchor residue are detrimental to Ly49C recognition. These results resemble those with a rat Ly49 where the identity of a peptide anchor residue determines recognition, suggesting that dependence on specific peptide residues buried in the MHC-I peptide-binding groove may be fundamental to Ly49 peptide selectivity and recognition.


Assuntos
Antígenos H-2/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , Alelos , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Modelos Moleculares , Oligopeptídeos/metabolismo , Ligação Proteica/genética , Conformação Proteica , Ratos , Receptores Semelhantes a Lectina de Células NK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA