Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Allergy ; 79(3): 679-689, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37916741

RESUMO

BACKGROUND: Drug hypersensitivity reactions (DHRs) to platinum-based drugs are heterogenous and restrict their access, and drug desensitization (DD) has provided a ground-breaking procedure for their re-introduction, although the response is heterogeneous. We aimed to identify the phenotypes, endotypes, and biomarkers of reactions to carboplatin and oxaliplatin and their response to DD. METHODS: Seventy-nine patients presenting with DHRs to oxaliplatin (N = 46) and carboplatin (N = 33) were evaluated at the Allergy Departments of two tertiary care hospitals in Spain. Patient symptoms, skin testing, biomarkers, and outcomes of 267 DDs were retrospectively analyzed. RESULTS: Oxaliplatin-reactive patients presented with type I (74%), cytokine release reaction (CRR) (11%), and mixed (Mx) (15%) phenotypes. In contrast, carboplatin reactive patients presented with predominantly type I (85%) and Mx (15%) but no CRRs. Out of 267 DDs, breakthrough reactions (BTRs) to oxaliplatin occurred twice as frequently as carboplatin (32% vs. 15%; p < .05). Phenotype switching from type I to another phenotype was observed in 46% of oxaliplatin DDs compared to 21% of carboplatin DDs. Tryptase was elevated in type I and Mx reactions, and IL-6 in CRR and Mx, indicating different mechanisms and endotypes. CONCLUSION: Carboplatin and oxaliplatin induced three different types of reactions with defined phenotypes and endotypes amendable to DD. Although most of the initial reactions for both were type I, oxaliplatin presented with unique CRR reactions. During DD, carboplatin reactive patients presented mostly type I BTR, while oxaliplatin-reactive patients frequently switched from type I to CRR, providing a critical difference and the need for personalized DD protocols.


Assuntos
Antineoplásicos , Hipersensibilidade a Drogas , Hipersensibilidade , Humanos , Oxaliplatina/efeitos adversos , Carboplatina/efeitos adversos , Estudos Retrospectivos , Antineoplásicos/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/terapia , Dessensibilização Imunológica/métodos , Citocinas , Fenótipo , Biomarcadores
5.
PLoS Genet ; 14(11): e1007753, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30403663

RESUMO

During the morphological process of sporulation in Bacillus subtilis two adjacent daughter cells (called the mother cell and forespore) follow different programs of gene expression that are linked to each other by signal transduction pathways. At a late stage in development, a signaling pathway emanating from the forespore triggers the proteolytic activation of the mother cell transcription factor σK. Cleavage of pro-σK to its mature and active form is catalyzed by the intramembrane cleaving metalloprotease SpoIVFB (B), a Site-2 Protease (S2P) family member. B is held inactive by two mother-cell membrane proteins SpoIVFA (A) and BofA. Activation of pro-σK processing requires a site-1 signaling protease SpoIVB (IVB) that is secreted from the forespore into the space between the two cells. IVB cleaves the extracellular domain of A but how this cleavage activates intramembrane proteolysis has remained unclear. Structural studies of the Methanocaldococcus jannaschii S2P homolog identified closed (substrate-occluded) and open (substrate-accessible) conformations of the protease, but the biological relevance of these conformations has not been established. Here, using co-immunoprecipitation and fluorescence microscopy, we show that stable association between the membrane-embedded protease and its substrate requires IVB signaling. We further show that the cytoplasmic cystathionine-ß-synthase (CBS) domain of the B protease is not critical for this interaction or for pro-σK processing, suggesting the IVB-dependent interaction site is in the membrane protease domain. Finally, we provide evidence that the B protease domain adopts both open and closed conformations in vivo. Collectively, our data support a substrate-gating model in which IVB-dependent cleavage of A on one side of the membrane triggers a conformational change in the membrane-embedded protease from a closed to an open state allowing pro-σK access to the caged interior of the protease.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Transporte Proteico , Proteólise , Esporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA