Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pulm Circ ; 6(4): 483-497, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28090290

RESUMO

Rapid access to lung-derived cells from stable subjects is a major challenge in the pulmonary hypertension field, given the relative contraindication of lung biopsy. In these studies, we sought to demonstrate the importance of evaluating a cell type that actively participates in disease processes, as well as the potential to translate these findings to vascular beds in other nonlung tissues, in this instance perivascular skin mesenchymal cells (MCs). We utilized posttransplant or autopsy lung explant-derived cells (ABCG2-expressing mesenchymal progenitor cells [MPCs], fibroblasts) and skin-derived MCs to test the hypothesis that perivascular ABCG2 MPCs derived from pulmonary arterial hypertension (PAH) patient lung and skin would express a gene profile reflective of ongoing vascular dysfunction. By analyzing the genetic signatures and pathways associated with abnormal ABCG2 lung MPC phenotypes during PAH and evaluating them in lung- and skin-derived MCs, we have identified potential predictor genes for detection of PAH as well as a targetable mechanism to restore MPCs and microvascular function. These studies are the first to explore the utility of expanding the study of ABCG2 MPC regulation of the pulmonary microvasculature to the epidermis, in order to identify potential markers for adult lung vascular disease, such as PAH.

2.
Am J Physiol Cell Physiol ; 307(8): C684-98, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25122876

RESUMO

Genesis of myofibroblasts is obligatory for the development of pathology in many adult lung diseases. Adult lung tissue contains a population of perivascular ABCG2(pos) mesenchymal stem cells (MSC) that are precursors of myofibroblasts and distinct from NG2 pericytes. We hypothesized that these MSC participate in deleterious remodeling associated with pulmonary fibrosis (PF) and associated hypertension (PH). To test this hypothesis, resident lung MSC were quantified in lung samples from control subjects and PF patients. ABCG2(pos) cell numbers were decreased in human PF and interstitial lung disease compared with control samples. Genetic labeling of lung MSC in mice enabled determination of terminal lineage and localization of ABCG2 cells following intratracheal administration of bleomycin to elicit fibrotic lung injury. Fourteen days following bleomycin injury enhanced green fluorescent protein (eGFP)-labeled lung MSC-derived cells were increased in number and localized to interstitial areas of fibrotic and microvessel remodeling. Finally, gene expression analysis was evaluated to define the response of MSC to bleomycin injury in vivo using ABCG2(pos) MSC isolated during the inflammatory phase postinjury and in vitro bleomycin or transforming growth factor-ß1 (TGF-ß1)-treated cells. MSC responded to bleomycin treatment in vivo with a profibrotic gene program that was not recapitulated in vitro with bleomycin treatment. However, TGF-ß1 treatment induced the appearance of a profibrotic myofibroblast phenotype in vitro. Additionally, when exposed to the profibrotic stimulus, TGF-ß1, ABCG2, and NG2 pericytes demonstrated distinct responses. Our data highlight ABCG2(pos) lung MSC as a novel cell population that contributes to detrimental myofibroblast-mediated remodeling during PF.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteínas de Neoplasias/metabolismo , Pericitos/fisiologia , Fibrose Pulmonar/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Células Cultivadas , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Miofibroblastos/fisiologia , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA