Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 23(1): 540, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898740

RESUMO

BACKGROUND: Prior studies have reported conflicting results regarding the association of prenatal maternal depression with offspring cortisol levels. We examined associations of high levels of prenatal depressive symptoms with child cortisol biomarkers. METHODS: In Project Viva (n = 925, Massachusetts USA), mothers reported their depressive symptoms using the Edinburgh Postnatal Depression Scale (EPDS) during pregnancy, cord blood glucocorticoids were measured at delivery, and child hair cortisol levels were measured in mid-childhood (mean (SD) age: 7.8 (0.8) years) and early adolescence (mean (SD) age: 13.2 (0.9) years). In the Generation R Study (n = 1644, Rotterdam, The Netherlands), mothers reported depressive symptoms using the Brief Symptom Inventory (BSI) during pregnancy, and child hair cortisol was measured at a mean (SD) age of 6.0 (0.5) years. We used cutoffs of ≥ 13 for the EPDS and > 0.75 for the BSI to indicate high levels of prenatal depressive symptoms. We used multivariable linear regression models adjusted for child sex and age (at outcome), and maternal pre-pregnancy BMI, education, social support from friends/family, pregnancy smoking status, marital status, and household income to assess associations separately in each cohort. We also meta-analyzed childhood hair cortisol results from both cohorts. RESULTS: 8.0% and 5.1% of women respectively experienced high levels of prenatal depressive symptoms in Project Viva and the Generation R Study. We found no associations between high levels of maternal depressive symptoms during pregnancy and child cortisol biomarkers in either cohort. CONCLUSIONS: The present study does not find support for the direct link between high levels of maternal depressive symptoms and offspring cortisol levels.


Assuntos
Glucocorticoides , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Gravidez , Humanos , Feminino , Criança , Depressão , Hidrocortisona , Estudos Prospectivos , Sangue Fetal , Mães , Cabelo , Biomarcadores
2.
Environ Int ; 142: 105808, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32554140

RESUMO

OBJECTIVE: To assess the association between estimated whole-brain and lobe-specific radiofrequency electromagnetic fields (RF-EMF) doses, using an improved integrated RF-EMF exposure model, and brain volumes in preadolescents at 9-12 years old. METHODS: Cross-sectional analysis in preadolescents aged 9-12 years from the Generation R Study, a population-based birth cohort set up in Rotterdam, The Netherlands (n = 2592). An integrated exposure model was used to estimate whole-brain and lobe-specific RF-EMF doses (mJ/kg/day) from different RF-EMF sources including mobile and Digital Enhanced Cordless Telecommunications (DECT) phone calls, other mobile phone uses than calling, tablet use, laptop use, and far-field sources. Whole-brain and lobe-specific RF-EMF doses were estimated for all RF-EMF sources together (i.e. overall) and for three groups of RF-EMF sources that lead to a different pattern of RF-EMF exposure. Information on brain volumes was extracted from magnetic resonance imaging scans. RESULTS: Estimated overall whole-brain RF-EMF dose was 84.3 mJ/kg/day. The highest overall lobe-specific dose was estimated in the temporal lobe (307.1 mJ/kg/day). Whole-brain and lobe-specific RF-EMF doses from all RF-EMF sources together, from mobile and DECT phone calls, and from far-field sources were not associated with global, cortical, or subcortical brain volumes. However, a higher whole-brain RF-EMF dose from mobile phone use for internet browsing, e-mailing, and text messaging, tablet use, and laptop use while wirelessly connected to the internet was associated with a smaller caudate volume. CONCLUSIONS: Our results suggest that estimated whole-brain and lobe-specific RF-EMF doses were not related to brain volumes in preadolescents at 9-12 years old. Screen activities with mobile communication devices while wirelessly connected to the internet lead to low RF-EMF dose to the brain and our observed association may thus rather reflect effects of social or individual factors related to these specific uses of mobile communication devices. However, we cannot discard residual confounding, chance finding, or reverse causality. Further studies on mobile communication devices and their potential negative associations with brain development are warranted, regardless whether associations are due to RF-EMF exposure or to other factors related to their use.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Encéfalo , Criança , Estudos Transversais , Exposição Ambiental , Humanos , Países Baixos , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA