Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(8): 1700-1716, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991590

RESUMO

The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.


Assuntos
Alelos , Variação Genética , Haplótipos , Repetições Minissatélites , Mucina-5AC , Mucina-5B , Filogenia , Humanos , Mucina-5B/genética , Animais , Mucina-5AC/genética , Mucina-5AC/metabolismo , Repetições Minissatélites/genética , Variações do Número de Cópias de DNA , Primatas/genética
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562829

RESUMO

The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.

3.
Genome Biol ; 25(1): 26, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243222

RESUMO

Potato is one of the world's major staple crops, and like many important crop plants, it has a polyploid genome. Polyploid haplotype assembly poses a major computational challenge. We introduce a novel strategy for the assembly of polyploid genomes and present an assembly of the autotetraploid potato cultivar Altus. Our method uses low-depth sequencing data from an offspring population to achieve chromosomal clustering and haplotype phasing on the assembly graph. Our approach generates high-quality assemblies of individual chromosomes with haplotype-specific sequence resolution of whole chromosome arms and can be applied in common breeding scenarios where collections of offspring are available.


Assuntos
Solanum tuberosum , Tetraploidia , Humanos , Haplótipos , Análise de Sequência de DNA , Solanum tuberosum/genética , Melhoramento Vegetal , Poliploidia
4.
Hemasphere ; 7(8): e925, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37469802

RESUMO

The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL.

5.
Nat Biotechnol ; 41(6): 832-844, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424487

RESUMO

Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.


Assuntos
Cromotripsia , Leucemia , Neoplasias , Humanos , Neoplasias/genética , Leucemia/genética , Rearranjo Gênico , Linhagem Celular , Variação Estrutural do Genoma
6.
Methods Mol Biol ; 2590: 127-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36335496

RESUMO

WhatsHap is a command-line tool for phasing and phasing-related tasks. It allows to infer haplotypes in diploid and polyploid samples based on (preferably long) reads covering at least two heterozygous variants. It offers additional tools for working with phased variant calls such as computing statistics, comparing different phasings and assigning reads in alignment files to their haplotype.


Assuntos
Diploide , Poliploidia , Humanos , Análise de Sequência de DNA , Haplótipos/genética , Heterozigoto , Algoritmos , Polimorfismo de Nucleotídeo Único
7.
Nature ; 611(7936): 519-531, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261518

RESUMO

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Assuntos
Mapeamento Cromossômico , Diploide , Genoma Humano , Genômica , Humanos , Mapeamento Cromossômico/normas , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Padrões de Referência , Genômica/métodos , Genômica/normas , Cromossomos Humanos/genética , Variação Genética/genética
8.
iScience ; 25(6): 104461, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35692633

RESUMO

An important challenge in genome assembly is haplotype phasing, that is, to reconstruct the different haplotype sequences of an individual genome. Phasing becomes considerably more difficult with increasing ploidy, which makes polyploid phasing a notoriously hard computational problem. We present a novel genetic phasing method for plant breeding with the aim to phase two deep-sequenced parental samples with the help of a large number of progeny samples sequenced at low depth. The key ideas underlying our approach are to (i) integrate the individually weak Mendelian progeny signals with a Bayesian log-likelihood model, (ii) cluster alleles according to their likelihood of co-occurrence, and (iii) assign them to haplotypes via an interval scheduling approach. We show on two deep-sequenced parental and 193 low-depth progeny potato samples that our approach computes high-quality sparse phasings and that it scales to whole genomes.

9.
Cell Genom ; 2(6): 100139, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778136

RESUMO

Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.

10.
Cell Res ; 32(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702947

RESUMO

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Assuntos
Canais de Potássio , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead , Humanos , Camundongos , NF-kappa B , Timócitos , Timo
11.
Genome Biol ; 21(1): 252, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32951599

RESUMO

Resolving genomes at haplotype level is crucial for understanding the evolutionary history of polyploid species and for designing advanced breeding strategies. Polyploid phasing still presents considerable challenges, especially in regions of collapsing haplotypes.We present WHATSHAP POLYPHASE, a novel two-stage approach that addresses these challenges by (i) clustering reads and (ii) threading the haplotypes through the clusters. Our method outperforms the state-of-the-art in terms of phasing quality. Using a real tetraploid potato dataset, we demonstrate how to assemble local genomic regions of interest at the haplotype level. Our algorithm is implemented as part of the widely used open source tool WhatsHap.


Assuntos
Haplótipos , Modelos Genéticos , Poliploidia , Algoritmos , Solanum tuberosum/genética
13.
Nat Biotechnol ; 38(3): 343-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873213

RESUMO

Structural variation (SV), involving deletions, duplications, inversions and translocations of DNA segments, is a major source of genetic variability in somatic cells and can dysregulate cancer-related pathways. However, discovering somatic SVs in single cells has been challenging, with copy-number-neutral and complex variants typically escaping detection. Here we describe single-cell tri-channel processing (scTRIP), a computational framework that integrates read depth, template strand and haplotype phase to comprehensively discover SVs in individual cells. We surveyed SV landscapes of 565 single cells, including transformed epithelial cells and patient-derived leukemic samples, to discover abundant SV classes, including inversions, translocations and complex DNA rearrangements. Analysis of the leukemic samples revealed four times more somatic SVs than cytogenetic karyotyping, submicroscopic copy-number alterations, oncogenic copy-neutral rearrangements and a subclonal chromothripsis event. Advancing current methods, single-cell tri-channel processing can directly measure SV mutational processes in individual cells, such as breakage-fusion-bridge cycles, facilitating studies of clonal evolution, genetic mosaicism and SV formation mechanisms, which could improve disease classification for precision medicine.


Assuntos
Biologia Computacional/métodos , Variação Estrutural do Genoma , Leucemia/genética , Análise de Célula Única/métodos , Linhagem Celular , Cromotripsia , Evolução Clonal , Rearranjo Gênico , Humanos , Mutação INDEL , Inversão de Sequência , Translocação Genética
14.
Bioinformatics ; 33(24): 4015-4023, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28169394

RESUMO

MOTIVATION: Next Generation Sequencing (NGS) has enabled studying structural genomic variants (SVs) such as duplications and inversions in large cohorts. SVs have been shown to play important roles in multiple diseases, including cancer. As costs for NGS continue to decline and variant databases become ever more complete, the relevance of genotyping also SVs from NGS data increases steadily, which is in stark contrast to the lack of tools to do so. RESULTS: We introduce a novel statistical approach, called DIGTYPER (Duplication and Inversion GenoTYPER), which computes genotype likelihoods for a given inversion or duplication and reports the maximum likelihood genotype. In contrast to purely coverage-based approaches, DIGTYPER uses breakpoint-spanning read pairs as well as split alignments for genotyping, enabling typing also of small events. We tested our approach on simulated and on real data and compared the genotype predictions to those made by DELLY, which discovers SVs and computes genotypes, and SVTyper, a genotyping program used to genotype variants detected by LUMPY. DIGTYPER compares favorable especially for duplications (of all lengths) and for shorter inversions (up to 300 bp). In contrast to DELLY, our approach can genotype SVs from data bases without having to rediscover them. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/jana_ebler/digtyper.git. CONTACT: t.marschall@mpi-inf.mpg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Duplicação Cromossômica , Inversão Cromossômica , Variação Estrutural do Genoma , Técnicas de Genotipagem/métodos , Bases de Dados de Ácidos Nucleicos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Deleção de Sequência , Software
15.
BMC Genomics ; 16: 238, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25887570

RESUMO

BACKGROUND: Many tools exist to predict structural variants (SVs), utilizing a variety of algorithms. However, they have largely been developed and tested on human germline or somatic (e.g. cancer) variation. It seems appropriate to exploit this wealth of technology available for humans also for other species. Objectives of this work included: a) Creating an automated, standardized pipeline for SV prediction. b) Identifying the best tool(s) for SV prediction through benchmarking. c) Providing a statistically sound method for merging SV calls. RESULTS: The SV-AUTOPILOT meta-tool platform is an automated pipeline for standardization of SV prediction and SV tool development in paired-end next-generation sequencing (NGS) analysis. SV-AUTOPILOT comes in the form of a virtual machine, which includes all datasets, tools and algorithms presented here. The virtual machine easily allows one to add, replace and update genomes, SV callers and post-processing routines and therefore provides an easy, out-of-the-box environment for complex SV discovery tasks. SV-AUTOPILOT was used to make a direct comparison between 7 popular SV tools on the Arabidopsis thaliana genome using the Landsberg (Ler) ecotype as a standardized dataset. Recall and precision measurements suggest that Pindel and Clever were the most adaptable to this dataset across all size ranges while Delly performed well for SVs larger than 250 nucleotides. A novel, statistically-sound merging process, which can control the false discovery rate, reduced the false positive rate on the Arabidopsis benchmark dataset used here by >60%. CONCLUSION: SV-AUTOPILOT provides a meta-tool platform for future SV tool development and the benchmarking of tools on other genomes using a standardized pipeline. It optimizes detection of SVs in non-human genomes using statistically robust merging. The benchmarking in this study has demonstrated the power of 7 different SV tools for analyzing different size classes and types of structural variants. The optional merge feature enriches the call set and reduces false positives providing added benefit to researchers planning to validate SVs. SV-AUTOPILOT is a powerful, new meta-tool for biologists as well as SV tool developers.


Assuntos
Variação Genética , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Deleção de Sequência/genética , Software
16.
Int J Cancer ; 132(3): E106-15, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22907398

RESUMO

In many cancer types, MYC proteins are known to be master regulators of the RNA-producing machinery. Neuroblastoma is a tumor of early childhood characterized by heterogeneous clinical courses. Amplification of the MYCN oncogene is a marker of poor patient outcome in this disease. Here, we investigated the MYCN-driven transcriptome of 20 primary neuroblastomas with and without MYCN amplification using next-generation RNA sequencing and compared the results to those from an in vitro cell model for inducible MYCN (SH-EP MYCN-ER). Transcriptome sequencing produced 30-90 million mappable reads for each dataset. The most abundant RNA species was mRNA, but snoRNAs, pseudogenes and processed transcripts were also recovered. A total of 223 genes were significantly differentially expressed between MYCN-amplified and single-copy tumors. Of those genes associated with MYCN both in vitro and in vivo, 32% of MYCN upregulated and 37% of MYCN downregulated genes were verified either as previously identified MYCN targets or as having MYCN-binding motifs. Pathway analyses suggested transcriptomal upregulation of mTOR-related genes by MYCN. MYCN-driven neuroblastomas in mice displayed activation of the mTOR pathway on the protein level and activation of MYCN in SH-EP MYCN-ER cells resulted in high sensitivity toward mTOR inhibition in vitro. We conclude that next-generation RNA sequencing allows for the identification of MYCN regulated transcripts in neuroblastoma. As our results suggest MYCN involvement in mTOR pathway activation on the transcriptional level, mTOR inhibitors should be further evaluated for the treatment of MYCN-amplified neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA não Traduzido , Análise de Sequência de RNA , Células Tumorais Cultivadas
17.
Methods ; 59(1): 154-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23098880

RESUMO

Using both high-throughput sequencing and real-time PCR, the miRNA transcriptome can be analyzed in complementary ways. We describe the necessary bioinformatics pipeline, including software tools, and key methodological steps in the process, such as adapter removal, read mapping, normalization, and multiple testing issues for biomarker identification. The methods are exemplified by the analysis of five favorable (event-free survival) vs. five unfavorable (died of disease) neuroblastoma tumor samples with a total of over 188 million reads.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Algoritmos , Biomarcadores Tumorais/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Perfilação da Expressão Gênica/normas , Genoma Humano , Humanos , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Controle de Qualidade , Padrões de Referência , Homologia de Sequência do Ácido Nucleico , Software
18.
Nucleic Acids Res ; 38(17): 5919-28, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20466808

RESUMO

Small non-coding RNAs, in particular microRNAs(miRNAs), regulate fine-tuning of gene expression and can act as oncogenes or tumor suppressor genes. Differential miRNA expression has been reported to be of functional relevance for tumor biology. Using next-generation sequencing, the unbiased and absolute quantification of the small RNA transcriptome is now feasible. Neuroblastoma(NB) is an embryonal tumor with highly variable clinical course. We analyzed the small RNA transcriptomes of five favorable and five unfavorable NBs using SOLiD next-generation sequencing, generating a total of >188 000 000 reads. MiRNA expression profiles obtained by deep sequencing correlated well with real-time PCR data. Cluster analysis differentiated between favorable and unfavorable NBs, and the miRNA transcriptomes of these two groups were significantly different. Oncogenic miRNAs of the miR17-92 cluster and the miR-181 family were overexpressed in unfavorable NBs. In contrast, the putative tumor suppressive microRNAs, miR-542-5p and miR-628, were expressed in favorable NBs and virtually absent in unfavorable NBs. In-depth sequence analysis revealed extensive post-transcriptional miRNA editing. Of 13 identified novel miRNAs, three were further analyzed, and expression could be confirmed in a cohort of 70 NBs.


Assuntos
MicroRNAs/metabolismo , Neuroblastoma/genética , Sequência de Bases , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , MicroRNAs/química , Dados de Sequência Molecular , Neuroblastoma/metabolismo , Edição de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA