Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 299(5): 103029, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806681

RESUMO

Vascular endothelial cells form the inner cellular lining of blood vessels and have myriad physiologic functions including angiogenesis and response to hypoxia. We recently identified a set of endothelial cell (EC)-enriched long noncoding RNAs (lncRNAs) in differentiated human primary cell types and described the role of the STEEL lncRNA in angiogenic patterning. We sought to further understand the role of EC-enriched lncRNAs in physiologic adaptation of the vascular endothelium. In this work, we describe an abundant, cytoplasmic, and EC-enriched lncRNA, GATA2-AS1, that is divergently transcribed from the EC-enriched developmental regulator, GATA2. While GATA2-AS1 is largely coexpressed with GATA2 in ECs, GATA2-AS1 and GATA2 appear to be complementary rather than synergistic as they have mostly distinct target genes. Common single nucleotide variants in GATA2-AS1 exons are associated with early-onset coronary artery disease and decreased expression of GATA2-AS1 in endothelial cell lines. In most cells, HIF1-α is central to the transcriptional response to hypoxia, while in ECs, both HIF1-α and HIF2-α are required to coordinate an acute and chronic response, respectively. In this setting, GATA2-AS1 contributes to the "HIF switch" and augments HIF1-α induction in acute hypoxia to regulate HIF1-α/HIF2-α balance. In hypoxia, GATA2-AS1 orchestrates HIF1-α-dependent induction of the glycolytic pathway and HIF1-α-independent maintenance of mitochondrial biogenesis. Similarly, GATA2-AS1 coordinates both metabolism and "tip/stalk" cell signaling to regulate angiogenesis in hypoxic ECs. Furthermore, we find that GATA2-AS1 expression patterns are perturbed in atherosclerotic disease. Together, these results define a role for GATA2-AS1 in the EC-specific response to hypoxia.


Assuntos
Fator de Transcrição GATA2 , Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA Longo não Codificante , Transdução de Sinais , Humanos , Células Endoteliais/metabolismo , Fator de Transcrição GATA2/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250464

RESUMO

For patients and caregivers to be fully informed about how living organ donation or prior kidney injury affects future health, we need to better understand the role of kidney reserve in physiological adaptation, especially during pregnancy. Importantly, epidemiological studies reason that live kidney donors are at increased risk for developing preeclampsia, a hypertensive disorder of pregnancy with serious implications for maternal and fetal health. Despite the import of this finding, the mechanistic basis for this increased risk is not understood. In this issue of the JCI, Dupont, Berg, and co-authors provide strong evidence that impaired placental perfusion, placental ischemia, increased soluble fms-like tyrosine kinase 1 (sFLT1), and a maternal preeclampsia-like phenotype are associated with an inability to upregulate the l-tryptophan-derived l-kynurenine pathway during pregnancy in mice with blunted renal reserve. These surprising revelations underscore the curious quiddity of l-tryptophan.


Assuntos
Pré-Eclâmpsia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Cinurenina/metabolismo , Camundongos , Placenta/metabolismo , Fator de Crescimento Placentário , Pré-Eclâmpsia/metabolismo , Gravidez , Triptofano/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 12(1): 14537, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008455

RESUMO

Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.


Assuntos
Inibidores da Angiogênese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra
4.
Eur Respir J ; 59(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34112731

RESUMO

Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Lesão Pulmonar Aguda/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais , Humanos , Camundongos , MicroRNAs/genética , Sepse/complicações , Sepse/terapia
5.
Sci Rep ; 11(1): 7818, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837224

RESUMO

Subarachnoid haemorrhage (SAH) is a type of hemorrhagic stroke that is associated with high morbidity and mortality. New effective treatments are needed to improve outcomes. The pathophysiology of SAH is complex and includes early brain injury and delayed cerebral ischemia, both of which are characterized by blood-brain barrier (BBB) impairment. We isolated brain endothelial cells (BECs) from mice subjected to SAH by injection of blood into the prechiasmatic cistern. We used gene expression profiling to identify 707 unique genes (2.8% of transcripts, 403 upregulated, 304 downregulated, 24,865 interrogated probe sets) that were significantly differentially expressed in mouse BECs after SAH. The pathway involving prostaglandin synthesis and regulation was significantly upregulated after SAH, including increased expression of the Ptgs2 gene and its corresponding COX-2 protein. Celecoxib, a selective COX-2 inhibitor, limited upregulation of Ptgs2 in BECs. In this study, we have defined the gene expression profiling of BECs after experimental SAH and provide further insight into BBB pathophysiology, which may be relevant to other neurological diseases such as traumatic brain injury, brain tumours, ischaemic stroke, multiple sclerosis, and neurodegenerative disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/metabolismo , Transcriptoma , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Celecoxib/uso terapêutico , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Camundongos , RNA/genética , RNA/isolamento & purificação , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Hemorragia Subaracnóidea/tratamento farmacológico , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Wiley Interdiscip Rev RNA ; 12(5): e1647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33694288

RESUMO

Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
J Immunol ; 204(5): 1173-1187, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31996458

RESUMO

Homogeneous populations of mature differentiated primary cell types can display variable responsiveness to extracellular stimuli, although little is known about the underlying mechanisms that govern such heterogeneity at the level of gene expression. In this article, we show that morphologically homogenous human endothelial cells exhibit heterogeneous expression of VCAM1 after TNF-α stimulation. Variability in VCAM1 expression was not due to stochasticity of intracellular signal transduction but rather to preexisting established heterogeneous states of promoter DNA methylation that were generationally conserved through mitosis. Variability in DNA methylation of the VCAM1 promoter resulted in graded RelA/p65 and RNA polymerase II binding that gave rise to a distribution of VCAM1 transcription in the population after TNF-α stimulation. Microarray analysis and single-cell RNA sequencing revealed that a number of cytokine-inducible genes shared this heterogeneous response pattern. These results show that heritable epigenetic heterogeneity is fundamental in inflammatory signaling and highlight VCAM1 as a metastable epiallele.


Assuntos
Epigênese Genética/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Regiões Promotoras Genéticas/imunologia , RNA Polimerase II/genética , RNA Polimerase II/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
8.
PLoS One ; 13(8): e0202778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30169548

RESUMO

BACKGROUND: MicroRNAs (miR) are small non-coding RNAs that regulate diverse biological functions. The bicistronic gene miR-143/145 determines cell fate and phenotype of vascular smooth muscle cells (VSMC), in part, by destabilizing Elk-1 mRNA. The transcription factor c-Myb also regulates differentiation and proliferation of VSMC, and here we test whether these effects may be mediated by miR-143/145. METHODS & RESULTS: Flow cytometry of cardiovascular-directed d3.75 embryoid bodies (EBs) isolated smooth muscle progenitors with specific cell surface markers. In c-myb knockout (c-myb -/-) EB, these progenitors manifest low levels of miR-143 (19%; p<0.05) and miR-145 (6%; p<0.01) expression as compared to wild-type (wt) EB. Primary VSMC isolated from transgenic mice with diminished expression (c-myblx/lx) or reduced activity (c-mybh/h) of c-Myb also manifest low levels of miR-143 (c-myblx/lx: 50%; c-mybh/h: 41%), and miR-145 (c-myblx/lx: 49%; c-mybh/h: 56%), as compared to wt (P<0.05). Sequence alignment identified four putative c-Myb binding sites (MBS1-4) in the proximal promoter (PP) of the miR-143/145 gene. PP-reporter constructs revealed that point mutations in MBS1 and MBS4 abrogated c-Myb-dependent transcription from the miR-143/145 PP (P<0.01). Chromatin immunoprecipitation (ChIP) revealed preferential c-Myb binding at MBS4 (p<0.001). By conjugating Elk-1 3'-untranslated region (UTR) to a reporter and co-transducing wt VSMC with this plus a miR-143-antagomir, and co-transducing c-myblx/lx VSMC with this plus a miR-143-mimic, we demonstrate that c-Myb's ability to repress Elk-1 is mediated by miR-143. CONCLUSION: c-Myb regulates VSMC gene expression by transcriptional activation of miR-143/145.


Assuntos
MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/genética , Ativação Transcricional/genética , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(10): 2401-2406, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467285

RESUMO

Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.


Assuntos
Cromatina/metabolismo , Células Endoteliais , Neovascularização Fisiológica , RNA Longo não Codificante , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Hemodinâmica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos SCID , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
J Biol Chem ; 293(12): 4381-4402, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414790

RESUMO

Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.


Assuntos
Cromatina/química , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/química , Peixe-Zebra/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/metabolismo , Endotélio Vascular/citologia , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
11.
Endocrinology ; 156(3): 1121-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549045

RESUMO

Binding of the receptor CXCR4 to its ligand stromal cell-derived factor 1 (SDF-1) promotes cell survival and is under the influence of a number of regulatory processes including enzymatic ligand inactivation by endopeptidases such as matrix metalloproteinase 9 (MMP-9). In light of the pivotal role that the SDF-1/CXCR4 axis plays in renal development and in the pathological growth of renal cells, we explored the function of this pathway in diabetic rats and in biopsies from patients with diabetic nephropathy, hypothesizing that the pro-survival effects of CXCR4 in resident cells would attenuate renal injury. Renal CXCR4 expression was observed to be increased in diabetic rats, whereas antagonism of the receptor unmasked albuminuria and accelerated tubular epithelial cell death. In cultured cells, CXCR4 blockade promoted tubular cell apoptosis, up-regulated Bcl-2-associated death promoter, and prevented high glucose/SDF-1-augmented phosphorylation of the pro-survival kinase, Akt. Although CXCR4 expression was also increased in biopsy tissue from patients with diabetic nephropathy, serine 339 phosphorylation of the receptor, indicative of ligand engagement, was unaffected. Coincident with these changes in receptor expression but not activity, MMP-9 was also up-regulated in diabetic nephropathy biopsies. Supporting a ligand-inactivating effect of the endopeptidase, exposure of cultured cells to recombinant MMP-9 abrogated SDF-1 induced Akt phosphorylation. These observations demonstrate a potentially reno-protective role for CXCR4 in diabetes that is impeded in its actions in the human kidney by the coincident up-regulation of ligand-inactivating endopeptidases. Therapeutically intervening in this interplay may limit tubulointerstitial injury, the principal determinant of renal decline in diabetes.


Assuntos
Sobrevivência Celular/fisiologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Túbulos Renais/citologia , Receptores CXCR4/metabolismo , Albuminúria/metabolismo , Animais , Benzilaminas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ciclamos , Diabetes Mellitus Experimental , Nefropatias Diabéticas/metabolismo , Compostos Heterocíclicos , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética
12.
PLoS One ; 9(3): e92227, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637920

RESUMO

The progressive decline of renal function in chronic kidney disease (CKD) is characterized by both disruption of the microvascular architecture and the accumulation of fibrotic matrix. One angiogenic pathway recently identified as playing an essential role in renal vascular development is the stromal cell-derived factor-1α (SDF-1)/CXCR4 pathway. Because similar developmental processes may be recapitulated in the disease setting, we hypothesized that the SDF-1/CXCR4 system would regulate microvascular health in CKD. Expression of CXCR4 was observed to be increased in the kidneys of subtotally nephrectomized (SNx) rats and in biopsies from patients with secondary focal segmental glomerulosclerosis (FSGS), a rodent model and human correlate both characterized by aberration of the renal microvessels. A reno-protective role for local SDF-1/CXCR4 signaling was indicated by i) CXCR4-dependent glomerular eNOS activation following acute SDF-1 administration; and ii) acceleration of renal function decline, capillary loss and fibrosis in SNx rats treated with chronic CXCR4 blockade. In contrast to the upregulation of CXCR4, SDF-1 transcript levels were decreased in SNx rat kidneys as well as in renal fibroblasts exposed to the pro-fibrotic cytokine transforming growth factor ß (TGF-ß), the latter effect being attenuated by histone deacetylase inhibition. Increased renal SDF-1 expression was, however, observed following the treatment of SNx rats with the ACE inhibitor, perindopril. Collectively, these observations indicate that local SDF-1/CXCR4 signaling functions to preserve microvascular integrity and prevent renal fibrosis. Augmentation of this pathway, either purposefully or serendipitously with either novel or existing therapies, may attenuate renal decline in CKD.


Assuntos
Capilares/patologia , Quimiocina CXCL12/metabolismo , Rim/irrigação sanguínea , Receptores CXCR4/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Transdução de Sinais , Adulto , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Benzilaminas , Biópsia , Capilares/efeitos dos fármacos , Capilares/metabolismo , Linhagem Celular , Quimiocina CXCL12/genética , Ciclamos , Fibrose , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Imuno-Histoquímica , Rim/enzimologia , Rim/patologia , Rim/cirurgia , Testes de Função Renal , Nefrectomia , Óxido Nítrico Sintase Tipo III/metabolismo , Perindopril/farmacologia , Perindopril/uso terapêutico , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Stem Cells ; 31(11): 2408-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922321

RESUMO

Adult bone marrow-derived cells can improve organ function in chronic disease models, ostensibly by the release of paracrine factors. It has, however, been difficult to reconcile this prevailing paradigm with the lack of cell retention within injured organs and their rapid migration to the reticuloendothelial system. Here, we provide evidence that the salutary antifibrotic effects of bone marrow-derived early outgrowth cells (EOCs) are more consistent with an endocrine mode of action, demonstrating not only the presence of antifibrotic factors in the plasma of EOC-treated rats but also that EOC conditioned medium (EOC-CM) potently attenuates both TGF-ß- and angiotensin II-induced fibroblast collagen production in vitro. To examine the therapeutic relevance of these findings in vivo, 5/6 subtotally nephrectomized rats, a model of chronic kidney and heart failure characterized by progressive fibrosis of both organs, were randomized to receive i.v. injections of EOC-CM, unconditioned medium, or 10(6) EOCs. Rats that received unconditioned medium developed severe kidney injury with cardiac diastolic dysfunction. In comparison, EOC-CM-treated rats demonstrated substantially improved renal and cardiac function and structure, mimicking the changes found in EOC-treated animals. Mass spectrometric analysis of EOC-CM identified proteins that regulate cellular functions implicated in fibrosis. These results indicate that EOCs secrete soluble factor(s) with highly potent antifibrotic activity, that when injected intravenously replicate the salutary effects of the cells themselves. Together, these findings suggest that an endocrine mode of action may underlie the effectiveness of cell therapy in certain settings and portend the possibility for systemic delivery of cell-free therapy.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Fibrose/cirurgia , Células-Tronco Mesenquimais/metabolismo , Insuficiência Renal Crônica/cirurgia , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose/patologia , Citometria de Fluxo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/cirurgia , Humanos , Rim/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Fagocitose , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Insuficiência Renal Crônica/patologia
16.
Blood ; 121(17): 3531-40, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23449636

RESUMO

Proximal promoter DNA methylation has been shown to be important for regulating gene expression. However, its relative contribution to the cell-specific expression of endothelial cell (EC)-enriched genes has not been defined. We used methyl-DNA immunoprecipitation and bisulfite conversion to analyze the DNA methylation profile of EC-enriched genes in ECs vs nonexpressing cell types, both in vitro and in vivo. We show that prototypic EC-enriched genes exhibit functional differential patterns of DNA methylation in proximal promoter regions of most (eg, CD31, von Willebrand factor [vWF], VE-cadherin, and intercellular adhesion molecule-2), but not all (eg, VEGFR-1 and VEGFR-2), EC-enriched genes. Comparable findings were evident in cultured ECs, human blood origin ECs, and murine aortic ECs. Promoter-reporter episomal transfection assays for endothelial nitric oxide synthase, VE-cadherin, and vWF indicated functional promoter activity in cell types where the native gene was not active. Inhibition of DNA methyltransferase activity indicated important functional relevance. Importantly, profiling DNA replication timing patterns indicated that EC-enriched gene promoters with differentially methylated regions replicate early in S-phase in both expressing and nonexpressing cell types. Collectively, these studies highlight the functional importance of promoter DNA methylation in controlling vascular EC gene expression.


Assuntos
Metilação de DNA , Período de Replicação do DNA , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fase S/fisiologia , Animais , Antígenos CD/genética , Aorta/citologia , Aorta/metabolismo , Caderinas/genética , Bovinos , Moléculas de Adesão Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Derme/citologia , Derme/metabolismo , Endotélio Vascular/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fator de von Willebrand/genética
17.
J Biol Chem ; 287(34): 29003-20, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22745131

RESUMO

The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.


Assuntos
Adaptação Fisiológica/fisiologia , RNA Helicases DEAD-box/biossíntese , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Ribonuclease III/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , RNA Helicases DEAD-box/genética , Endotélio Vascular/citologia , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/genética , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ribonuclease III/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
18.
Semin Nephrol ; 32(2): 215-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22617771

RESUMO

Endothelial injury is a characteristic finding in chronic kidney disease and is associated with both markedly increased cardiovascular risk and chronic kidney disease progression. The past decade has seen a remarkable surge of interest in the role of bone marrow-derived cells for the protection, repair, and regeneration of injured endothelium. In particular, despite controversies regarding their mechanisms of action, endothelial progenitor cells have garnered considerable attention, with multiple reports suggesting that these cells exhibit remarkable pro-angiogenic effects. Recent advances in our understanding of how the bone marrow responds to endothelial injury now suggest that multiple bone marrow cell populations, including both endothelial progenitor cells and a novel group of cells called early outgrowth cells, promote endothelial repair and regeneration through different, yet complementary, mechanisms. Moreover, certain subsets of bone marrow-derived cells also appear to have novel, potent, angiogenesis-independent tissue-protective properties. The bone marrow should thus now be viewed not only as a hematopoiesis organ, but also as a rich reservoir of cells capable of protecting and even regenerating nonhematopoietic tissues such as the kidney. To harness the prognostic and therapeutic potential of the bone marrow, the renal community must be aware of recent advances in our understanding of the nature and therapeutic potential of these cells.


Assuntos
Células da Medula Óssea/fisiologia , Células Endoteliais/fisiologia , Nefropatias/terapia , Animais , Proliferação de Células , Células Endoteliais/citologia , Humanos , Regeneração , Transplante de Células-Tronco , Fator A de Crescimento do Endotélio Vascular/fisiologia
19.
Proc Natl Acad Sci U S A ; 108(42): 17544-9, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21976486

RESUMO

Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.


Assuntos
Anemia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Adaptação Fisiológica , Anemia/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Débito Cardíaco , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Oxigênio/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Resistência Vascular , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
20.
PLoS One ; 5(3): e9543, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20209052

RESUMO

BACKGROUND: Most forms of chronic kidney disease are characterized by progressive renal and cardiac fibrosis leading to dysfunction. Preliminary evidence suggests that various bone marrow-derived cell populations have antifibrotic effects. In exploring the therapeutic potential of bone marrow derived cells in chronic cardio-renal disease, we examined the anti-fibrotic effects of bone marrow-derived culture modified cells (CMCs) and stromal cells (SCs). METHODOLOGY/PRINCIPAL FINDINGS: In vitro, CMC-conditioned medium, but not SC-conditioned medium, inhibited fibroblast collagen production and cell signalling in response to transforming growth factor-beta. The antifibrotic effects of CMCs and SCs were then evaluated in the 5/6 nephrectomy model of chronic cardio-renal disease. While intravascular infusion of 10(6) SCs had no effect, 10(6) CMCs reduced renal fibrosis compared to saline in the glomeruli (glomerulosclerosis index: 0.8+/-0.1 v 1.9+/-0.2 arbitrary units) and the tubulointersitium (% area type IV collagen: 1.2+/-0.3 v 8.4+/-2.0, p<0.05 for both). Similarly, 10(6) CMCs reduced cardiac fibrosis compared to saline (% area stained with picrosirius red: 3.2+/-0.3 v 5.1+/-0.4, p<0.05), whereas 10(6) SCs had no effect. Structural changes induced by CMC therapy were accompanied by improved function, as reflected by reductions in plasma creatinine (58+/-3 v 81+/-11 micromol/L), urinary protein excretion (9x/divided by 1 v 64x/divided by 1 mg/day), and diastolic cardiac stiffness (left ventricular end-diastolic pressure-volume relationship: 0.030+/-0.003 v 0.058+/-0.011 mm Hg/microL, p<0.05 for all). Despite substantial improvements in structure and function, only rare CMCs were present in the kidney and heart, whereas abundant CMCs were detected in the liver and spleen. CONCLUSIONS/SIGNIFICANCE: Together, these findings provide the first evidence suggesting that CMCs, but not SCs, exert a protective action in cardio-renal disease and that these effects may be mediated by the secretion of diffusible anti-fibrotic factor(s).


Assuntos
Células da Medula Óssea/citologia , Fibrose/patologia , Traumatismos Cardíacos/patologia , Falência Renal Crônica/patologia , Rim/lesões , Rim/metabolismo , Animais , Células da Medula Óssea/patologia , Colágeno/química , Creatinina/sangue , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Glomerulonefrite/patologia , Masculino , Ratos , Ratos Endogâmicos F344 , Células Estromais/citologia , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA