Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 3258-3269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39286527

RESUMO

Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2-4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants.

2.
Cell Rep ; 43(7): 114406, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38963759

RESUMO

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.


Assuntos
Acetaldeído , Melanoma , Peixe-Zebra , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Histonas/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Transcrição Gênica/efeitos dos fármacos , Crista Neural/metabolismo , Crista Neural/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
J Clin Immunol ; 44(2): 60, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324161

RESUMO

TLR7 recognizes pathogen-derived single-stranded RNA (ssRNA), a function integral to the innate immune response to viral infection. Notably, TLR7 can also recognize self-derived ssRNA, with gain-of-function mutations in human TLR7 recently identified to cause both early-onset systemic lupus erythematosus (SLE) and neuromyelitis optica. Here, we describe two novel mutations in TLR7, F507S and L528I. While the L528I substitution arose de novo, the F507S mutation was present in three individuals from the same family, including a severely affected male, notably given that the TLR7 gene is situated on the X chromosome and that all other cases so far described have been female. The observation of mutations at residues 507 and 528 of TLR7 indicates the importance of the TLR7 dimerization interface in maintaining immune homeostasis, where we predict that altered homo-dimerization enhances TLR7 signaling. Finally, while mutations in TLR7 can result in SLE-like disease, our data suggest a broader phenotypic spectrum associated with TLR7 gain-of-function, including significant neurological involvement.


Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Feminino , Masculino , Humanos , Receptor 7 Toll-Like , Mutação , Dimerização , RNA
4.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977118

RESUMO

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Assuntos
Proteína Supressora de Tumor p53 , Humanos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Divisão Celular , Proteína Supressora de Tumor p53/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
5.
J Clin Immunol ; 43(4): 808-818, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36753016

RESUMO

PURPOSE: STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy. METHODS: Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant. RESULTS: WGS identified a rare homozygous single nucleotide transition in STAT2 (c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient. CONCLUSION: Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling.


Assuntos
Interferon Tipo I , Humanos , Anticorpos/genética , Regulação da Expressão Gênica , Interferon Tipo I/genética , Mutação/genética , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/química , Ativação Transcricional , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Homozigoto
6.
Nat Med ; 28(7): 1439-1446, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788175

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) increases rapidly in prevalence beyond age 60 and has been associated with increased risk for malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Because mutations in HSPCs often drive leukemia, we hypothesized that HSPC fitness substantially contributes to transformation from CHIP to leukemia. HSPC fitness is defined as the proliferative advantage over cells carrying no or only neutral mutations. If mutations in different genes lead to distinct fitness advantages, this could enable patient stratification. We quantified the fitness effects of mutations over 12 years in older age using longitudinal sequencing and developed a filtering method that considers individual mutational context alongside mutation co-occurrence to quantify the growth potential of variants within individuals. We found that gene-specific fitness differences can outweigh inter-individual variation and, therefore, could form the basis for personalized clinical management.


Assuntos
Hematopoese , Leucemia , Hematopoiese Clonal , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia/patologia , Pessoa de Meia-Idade , Mutação/genética
7.
Hum Mutat ; 40(8): 1063-1070, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045292

RESUMO

Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.


Assuntos
DNA Helicases/genética , Nanismo/genética , Variação Genética , Microcefalia/genética , Adolescente , Alelos , DNA Helicases/química , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Insercional , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
8.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30936093

RESUMO

Membrane targeting of autophagy-related complexes is an important step that regulates their activities and prevents their aberrant engagement on non-autophagic membranes. ATG16L1 is a core autophagy protein implicated at distinct phases of autophagosome biogenesis. In this study, we dissected the recruitment of ATG16L1 to the pre-autophagosomal structure (PAS) and showed that it requires sequences within its coiled-coil domain (CCD) dispensable for homodimerisation. Structural and mutational analyses identified conserved residues within the CCD of ATG16L1 that mediate direct binding to phosphoinositides, including phosphatidylinositol 3-phosphate (PI3P). Mutating putative lipid binding residues abrogated the localisation of ATG16L1 to the PAS and inhibited LC3 lipidation. On the other hand, enhancing lipid binding of ATG16L1 by mutating negatively charged residues adjacent to the lipid binding motif also resulted in autophagy inhibition, suggesting that regulated recruitment of ATG16L1 to the PAS is required for its autophagic activity. Overall, our findings indicate that ATG16L1 harbours an intrinsic ability to bind lipids that plays an essential role during LC3 lipidation and autophagosome maturation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas Relacionadas à Autofagia/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia
9.
Nat Genet ; 51(1): 96-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478443

RESUMO

DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Nanismo/genética , Mutação com Ganho de Função/genética , Microcefalia/genética , Proteínas do Grupo Polycomb/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Feminino , Células HeLa , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética
10.
Cell Syst ; 6(5): 555-568.e7, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29778836

RESUMO

Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states.


Assuntos
Aptidão Genética/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Células A549 , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Genes Essenciais/genética , Testes Genéticos/métodos , Células HEK293 , Humanos , Mamíferos/genética , Complexos Multiproteicos/genética , Interferência de RNA
11.
Cell Rep ; 22(12): 3265-3276, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562182

RESUMO

It has been suggested that the evolution of protein complexes is significantly influenced by stochastic, non-adaptive processes. Using ligand binding as a proxy of function, we show that the structure of ligand-binding sites significantly influences the evolution of protein complexes. We show that homomers with multi-chain binding sites (MBSs) evolve new functions slower than monomers or other homomers, and those binding cofactors and metals have more conserved quaternary structure than other homomers. Moreover, the ligands and ligand-binding pockets of homologous MBS homomers are more similar than monomers and other homomers. Our results suggest strong evolutionary selection for quaternary structure in cofactor-binding MBS homomers, whereas neutral processes are more important in complexes with single-chain binding sites. They also have pharmacological implications, suggesting that complexes with single-chain binding sites are better targets for selective drugs, whereas MBS homomers are good candidates for broad-spectrum antibiotic and multitarget drug design.


Assuntos
Sítios de Ligação/genética , Ligantes , Ligação Proteica/genética , Humanos
12.
Nat Struct Mol Biol ; 25(3): 279-288, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29434345

RESUMO

Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.


Assuntos
Complexos Multiproteicos/química , Biossíntese de Proteínas , Multimerização Proteica , Subunidades Proteicas/biossíntese , Evolução Molecular , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Domínios Proteicos , Engenharia de Proteínas , Dobramento de Proteína , Subunidades Proteicas/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Solubilidade
13.
Sci Rep ; 7(1): 12147, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939808

RESUMO

Late-onset retinal degeneration (L-ORD) is a rare autosomal dominant retinal dystrophy, characterised by extensive sub-retinal pigment epithelium (RPE) deposits, RPE atrophy, choroidal neovascularisation and photoreceptor cell death associated with severe visual loss. L-ORD shows striking phenotypic similarities to age-related macular degeneration (AMD), a common and genetically complex disorder, which can lead to misdiagnosis in the early stages. To date, a single missense mutation (S163R) in the C1QTNF5 gene, encoding C1q And Tumor Necrosis Factor Related Protein 5 (C1QTNF5) has been shown to cause L-ORD in a subset of affected families. Here, we describe the identification and characterisation of three novel pathogenic mutations in C1QTNF5 in order to elucidate disease mechanisms. In silico and in vitro characterisation show that these mutations perturb protein folding, assembly or polarity of secretion of C1QTNF5 and, importantly, all appear to destabilise the wildtype protein in co-transfection experiments in a human RPE cell line. This suggests that the heterozygous mutations in L-ORD show a dominant negative, rather than a haploinsufficient, disease mechanism. The function of C1QTNF5 remains unclear but this new insight into the pathogenetic basis of L-ORD has implications for future therapeutic strategies such as gene augmentation therapy.


Assuntos
Colágeno/genética , Mutação , Degeneração Retiniana/genética , Idoso , Sequência de Aminoácidos , Linhagem Celular , Colágeno/química , Colágeno/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Domínios Proteicos , Dobramento de Proteína , Degeneração Retiniana/metabolismo , Alinhamento de Sequência
14.
Curr Biol ; 27(1): R17-R18, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073014

RESUMO

Mitotic chromosome condensation, sister chromatid cohesion, and higher order folding of interphase chromatin are mediated by condensin and cohesin, eukaryotic members of the SMC (structural maintenance of chromosomes)-kleisin protein family. Other members facilitate chromosome segregation in bacteria [1]. A hallmark of these complexes is the binding of the two ends of a kleisin subunit to the apices of V-shaped Smc dimers, creating a tripartite ring capable of entrapping DNA (Figure 1A). In addition to creating rings, kleisins recruit regulatory subunits. One family of regulators, namely Kite dimers (Kleisin interacting winged-helix tandem elements), interact with Smc-kleisin rings from bacteria, archaea and the eukaryotic Smc5-6 complex, but not with either condensin or cohesin [2]. These instead possess proteins containing HEAT (Huntingtin/EF3/PP2A/Tor1) repeat domains whose origin and distribution have not yet been characterized. Using a combination of profile Hidden Markov Model (HMM)-based homology searches, network analysis and structural alignments, we identify a common origin for these regulators, for which we propose the name Hawks, i.e. HEAT proteins associated with kleisins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eucariotos/metabolismo , Evolução Molecular , Mitose , Complexos Multiproteicos/metabolismo , Segregação de Cromossomos , Cadeias de Markov , Coesinas
15.
Bioessays ; 36(2): 209-18, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24272815

RESUMO

Protein structure is dynamic: the intrinsic flexibility of polypeptides facilitates a range of conformational fluctuations, and individual protein chains can assemble into complexes. Proteins are also dynamic in evolution: significant variations in secondary, tertiary and quaternary structure can be observed among divergent members of a protein family. Recent work has highlighted intriguing similarities between these structural and evolutionary dynamics occurring at various levels. Here we review evidence showing how evolutionary changes in protein sequence and structure are often closely related to local protein flexibility and disorder, large-scale motions and quaternary structure assembly. We suggest that these correspondences can be largely explained by neutral evolution, while deviations between structural and evolutionary dynamics can provide valuable functional insights. Finally, we address future prospects for the field and practical applications that arise from a deeper understanding of the intimate relationship between protein structure, dynamics, function and evolution.


Assuntos
Proteínas/genética , Evolução Biológica , Conformação Proteica , Proteínas/classificação
16.
Structure ; 18(9): 1094-103, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826336

RESUMO

Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three nonhomologous, intrinsically disordered proteins: I-2, spinophilin, and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, preformed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex.


Assuntos
Proteína Fosfatase 1/química , Fosfoproteína 32 Regulada por cAMP e Dopamina/química , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteína Fosfatase 1/metabolismo , Proteínas/química , Proteínas/metabolismo , Relação Estrutura-Atividade
17.
Cancer Res ; 67(2): 626-33, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17234772

RESUMO

Synuclein-gamma (SNCG) plays oncogenic roles in breast carcinogenesis. Although the expression of SNCG is abnormally high in advanced and metastatic breast carcinomas, SNCG is not expressed in normal or benign breast tissues. SNCG is an intrinsically disordered protein known to interact with BubR1, a mitotic checkpoint kinase. The SNCG-BubR1 interaction inhibits mitotic checkpoint control upon spindle damage caused by anticancer drugs, such as nocodazole and taxol. Antimicrotubule drugs that cause mitotic arrest and subsequent apoptosis of cancer cells are frequently used to treat breast cancer patients with advanced or metastatic diseases. However, patient response rates to this class of chemotherapeutic agents vary significantly. In this study, we have designed a novel peptide (ANK) and shown its interaction with SNCG using fluorometry, surface plasmon resonance, and isothermal titration calorimetry. Binding of the ANK peptide did not induce folding of SNCG, suggesting that SNCG can function biologically in its intrinsically disordered state. Microinjection of the ANK peptide in breast cancer cell line overexpressing SNCG (MCF7-SNCG) exhibited a similar cell killing response by nocodazole as in the SNCG-negative MCF7 cells. Overexpression of enhanced green fluorescent protein-tagged ANK reduces SNCG-mediated resistance to paclitaxel treatment by approximately 3.5-fold. Our coimmunoprecipitation and colocalization results confirmed the intracellular association of the ANK peptide with SNCG. This is likely due to the disruption of the interaction of SNCG with BubR1 interaction. Our findings shed light on the molecular mechanism of the ANK peptide in releasing SNCG-mediated drug resistance.


Assuntos
Anquirinas/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Nocodazol/farmacologia , Fragmentos de Peptídeos/farmacologia , gama-Sinucleína/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anquirinas/genética , Anquirinas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Sequência Conservada , Resistencia a Medicamentos Antineoplásicos , Humanos , Cinética , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , gama-Sinucleína/metabolismo
18.
Protein Sci ; 15(12): 2795-804, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17088319

RESUMO

The synucleins are a family of intrinsically disordered proteins involved in various human diseases. alpha-Synuclein has been extensively characterized due to its role in Parkinson's disease where it forms intracellular aggregates, while gamma-synuclein is overexpressed in a majority of late-stage breast cancers. Despite fairly strong sequence similarity between the amyloid-forming regions of alpha- and gamma-synuclein, gamma-synuclein has only a weak propensity to form amyloid fibrils. We hypothesize that the different fibrillation tendencies of alpha- and gamma-synuclein may be related to differences in structural propensities. Here we have measured chemical shifts for gamma-synuclein and compared them to previously published shifts for alpha-synuclein. In order to facilitate direct comparison, we have implemented a simple new technique for re-referencing chemical shifts that we have found to be highly effective for both disordered and folded proteins. In addition, we have developed a new method that combines different chemical shifts into a single residue-specific secondary structure propensity (SSP) score. We observe significant differences between alpha- and gamma-synuclein secondary structure propensities. Most interestingly, gamma-synuclein has an increased alpha-helical propensity in the amyloid-forming region that is critical for alpha-synuclein fibrillation, suggesting that increased structural stability in this region may protect against gamma-synuclein aggregation. This comparison of residue-specific secondary structure propensities between intrinsically disordered homologs highlights the sensitivity of transient structure to sequence changes, which we suggest may have been exploited as an evolutionary mechanism for fast modulation of protein structure and, hence, function.


Assuntos
Amiloide/biossíntese , alfa-Sinucleína/química , gama-Sinucleína/química , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Modelos Teóricos , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA