Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Biol Sci ; 20(10): 4029-4043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113715

RESUMO

Helicobacter pylori has been recognized not only as a causative agent of a spectrum of gastroduodenal diseases including chronic gastritis, peptic ulcer, mucosa-associated lymphoid tissue lymphoma, and gastric cancer, but also as the culprit in several extra-gastric diseases. However, the association of H. pylori infection with extra-gastric diseases remains elusive, prompting a reevaluation of the role of H. pylori-derived outer membrane vesicles (OMVs). Like other gram-negative bacteria, H. pylori constitutively sheds biologically active OMVs for long-distance delivery of bacterial virulence factors in a concentrated and protected form, averting the need of direct bacterial contact with distant host cells to induce extra-gastric diseases associated with this gastric pathogen. Additionally, H. pylori-derived OMVs contribute to bacterial survival and chronic gastric pathogenesis. Moreover, the immunogenic activity, non-replicable nature, and anti-bacterial adhesion effect of H. pylori OMVs make them a desirable vaccine candidate against infection. The immunogenic potency and safety concerns of the OMV contents are challenges in the development of H. pylori OMV-based vaccines. In this review, we discuss recent advances regarding H. pylori OMVs, focusing on new insights into their biogenesis mechanisms and biological functions.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Animais , Fatores de Virulência/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Crit Rev Microbiol ; : 1-30, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910506

RESUMO

Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of approximately half of the worldwide population, with higher prevalence in densely populated areas like Asia, the Caribbean, Latin America, and Africa. H. pylori infections range from asymptomatic cases to potentially fatal diseases, including peptic ulcers, chronic gastritis, and stomach adenocarcinoma. The management of these conditions has become more difficult due to the rising prevalence of drug-resistant H. pylori infections, which ultimately lead to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the International Agency for Research on Cancer (IARC) categorized H. pylori as a Group I carcinogen, contributing to approximately 780,000 cancer cases annually. Antibiotic resistance against drugs used to treat H. pylori infections ranges between 15% and 50% worldwide, with Asian countries having exceptionally high rates. This review systematically examines the impacts of H. pylori infection, the increasing prevalence of antibiotic resistance, and the urgent need for accurate diagnosis and precision treatment. The present status of precision treatment strategies and prospective approaches for eradicating infections caused by antibiotic-resistant H. pylori will also be evaluated.

3.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609049

RESUMO

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

4.
BMC Microbiol ; 23(1): 360, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993791

RESUMO

BACKGROUND: Helicobacter pylori lipopolysaccharide (LPS) structures vary among strains of different geographic origin. The aim of this study was to characterize the LPS O-antigen profiles of H. pylori strains isolated from Southwest China, and to further analyze the association of Lewis antigen expression with clinical outcomes and antibiotic resistance. RESULTS: A total of 71 H. pylori isolates from Southwest China were included for LPS profiling by silver staining and Western blotting after SDS-PAGE electrophoresis. We demonstrated that all the clinical isolates had the conserved lipid A and core-oligosaccharide, whereas the O-antigen domains varied significantly among the isolates. Compared with the common presence of the glucan/heptan moiety in LPS O-antigen structure of European strains, the clinical isolates in this study appeared to lack the glucan/heptan moiety. The expression frequency of Lex, Ley, Lea, and Leb was 66.2% (47/71), 84.5% (60/71), 56.3% (40/71), and 31.0% (22/71), respectively. In total, the expression of type II Lex and/or Ley was observed in 69 (97.2%) isolates, while type I Lea and/or Leb were expressed in 49 (69.0%) isolates. No association of Lewis antigen expression with clinical outcomes or with antibiotic resistance was observed. CONCLUSIONS: H. pylori strains from Southwest China tend to produce heptan-deficient LPS and are more likely to express type I Lewis antigens as compared with Western strains. This may suggest that H. pylori evolves to change its LPS structure for adaptation to different hosts.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Lipopolissacarídeos/metabolismo , Antígenos O , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Glucanos
5.
J Vis Exp ; (197)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37578257

RESUMO

Helicobacter pylori is a major human pathogen that infects approximately half of the global population and is becoming a serious health threat due to its increasing antibiotic resistance. It is the causative agent of chronic active gastritis, peptic ulcer disease, and gastric cancer and has been classified as a Group I Carcinogen by the International Agency for Research on Cancer. Therefore, the rapid and accurate diagnosis of H. pylori and the determination of its antibiotic resistance are important for the efficient eradication of this bacterial pathogen. Currently, H. pylori diagnosis methods mainly include the urea breath test (UBT), the antigen test, the serum antibody test, gastroscopy, the rapid urease test (RUT), and bacterial culture. Among them, the first three detection methods are noninvasive, meaning they are easy tests to conduct. However, bacteria cannot be retrieved through these techniques; thus, drug resistance testing cannot be performed. The last three are invasive examinations, but they are costly, require high skills, and have the potential to cause damage to patients. Therefore, a noninvasive, rapid, and simultaneous method for H. pylori detection and drug resistance testing is very important for efficiently eradicating H. pylori in clinical practice. This protocol aims to present a specific procedure involving the string test in combination with quantitative polymerase chain reaction (qPCR) for the rapid detection of H. pylori infection and antibiotic resistance. Unlike bacterial cultures, this method allows for easy, rapid, noninvasive diagnosis of H. pylori infection status and drug resistance. Specifically, we used qPCR to detect rea for H. pylori infection and mutations in the 23S rRNA and gyrA genes, which encode resistance against clarithromycin and levofloxacin, respectively. Compared to routinely used culturing techniques, this protocol provides a noninvasive, low-cost, and time-saving technique to detect H. pylori infection and determine its antibiotic resistance using qPCR.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Claritromicina/farmacologia , Resistência Microbiana a Medicamentos , Reação em Cadeia da Polimerase , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
6.
Cell Host Microbe ; 31(8): 1345-1358.e6, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490912

RESUMO

Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of ß-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Serina Proteases/genética , Serina Proteases/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Antígenos de Bactérias/metabolismo
7.
Future Microbiol ; 15: 1353-1361, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900223

RESUMO

Aim: To evaluate the primary antibiotic resistance in Helicobacter pylori strains isolated from a Chinese Tibetan population. Methods & materials: Gastric biopsies from 400 H. pylori treatment-naive Tibetan patients were collected for H. pylori isolation. Susceptibility to amoxicillin (AML)/clarithromycin (CLR)/levofloxacin (LEV)/metronidazole (MTZ)/tetracycline (TET)/rifampicin (RIF)/furazolidone (FZD) was determined by E-test or a disk diffusion assay. Results: Biopsies from 117 patients were H. pylori culture positive (29.3%). The primary resistance rates to MTZ, CLR, LEV, RIF, AML, TET and FZD were 90.6, 44.4, 28.2, 69.2, 7.7, 0.8 and 0.8%, respectively. Interestingly, 42.7% of the strains had simultaneous resistance to CLR and MTZ. Conclusion: Among Tibetan strains, primary resistance rates were high for CLR/MTZ/LEV, whereas primary resistance rates to AML/TET/FZD were low. The high resistance to RIF is a concerning finding.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Adolescente , Adulto , Idoso , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tibet/epidemiologia , Adulto Jovem
8.
JGH Open ; 4(4): 707-712, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782960

RESUMO

BACKGROUND AND AIM: While adenoma detection rate (ADR) is an important quality metric for screening colonoscopy, it remains difficult to be accessed due to the lack of integrated endoscopy and pathology databases. Hence, the use of an adenoma-to-polyp detection rate quotient and polyp detection rate (PDR) has been proposed to predict ADR. This study aimed to examine the usefulness of estimated ADR across different colonic segments in two age groups for Shenzhen people in China. METHODS: We retrospectively analyzed 7329 colonoscopy procedures performed by 12 endoscopists between January 2012 and February 2014. The PDR, actual ADR, and estimated ADR of the entire, proximal, and distal colon, and within each colonic segment, in two patient age groups: <50 and ≥50 years, were calculated for each endoscopist. RESULTS: The overall polyp and adenoma prevalence rates were 19.1 and 9.3%, respectively. The average age of adenoma-positive patients was significantly higher than that of adenoma-negative patients (54 ± 12.6 years vs 42.9 ± 13.2 years, respectively). A total of 1739 polyps were removed, among which 826 were adenomas. More adenomatous polyps were found in the proximal colon (60.4%, 341/565) than in the distal colon (40.9%, 472/1154). Overall, both actual and estimated ADR correlated strongly at the entire colon level and within most colonic segments, except for the cecum and rectum. In both age groups, these parameters correlated strongly within the traverse colon and descending colon. CONCLUSION: Caution should be exercised when predicting ADR within the sigmoid colon and rectum.

9.
PeerJ ; 8: e8878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280567

RESUMO

BACKGROUND: Helicobacter pylori infection is a significant burden to the public health in China as it can lead to various gastric diseases including peptic ulcers and gastric cancer. Since most infections occurred during childhood, it is therefore necessary to understand the prevalence and risk determinants of this bacterial infection in children. Herewith, we conducted a cross-sectional study in the Kuichong Subdistrict of Shenzhen City to assess the prevalence and risk factors of H. pylori infection among children. METHODS: From September 2018 to October 2018, 1,355 children aged 6-12 years from four primary schools in the Kuichong Subdistrict of Shenzhen City were recruited. These children were screened for H. pylori infection using the 13C-urea breath test. In addition, parents were requested to fill out a standardized questionnaire. The chi-square test and multivariable logistic regression analysis were used to identify risk factors for H. pylori. RESULTS: Among 1,355 children recruited in this study, 226 (16.7%; 95% CI [14.7-18.7]) were positive of H. pylori infection. Multivariable logistic regression analysis identified six factors significantly associated with H. pylori infection children including parent(s) with tertiary education level (OR: 0.64; 95% CI [0.46-0.89]), testing bottle feed temperature using the mouth (OR: 1.79; 95% CI [1.19-2.68]), sharing of cutlery between the feeding person and young children during meals (OR: 1.84; 95% CI [1.22-2.78]), eating fruit after peeling (OR: 2.56; 95% CI [1.4-4.71]), frequent dining out (OR: 3.13; 95% CI [1.46-6.68]) and snacking (OR: 1.43; 95% CI [1.01-2.01]). CONCLUSIONS: Overall, better educated parent(s) played a protective role against the acquisition of H. pylori infection in children. Testing bottle feed temperature using the mouth, cutlery sharing between the feeding person and young children, and snacking posed a lower but significant risk for H. pylori infection. Only eating peeled fruits and frequent dining out were associated with greater infection risks.

10.
PLoS Genet ; 15(11): e1008497, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31747390

RESUMO

The lipopolysaccharide O-antigen structure expressed by the European Helicobacter pylori model strain G27 encompasses a trisaccharide, an intervening glucan-heptan and distal Lewis antigens that promote immune escape. However, several gaps still remain in the corresponding biosynthetic pathway. Here, systematic mutagenesis of glycosyltransferase genes in G27 combined with lipopolysaccharide structural analysis, uncovered HP0102 as the trisaccharide fucosyltransferase, HP1283 as the heptan transferase, and HP1578 as the GlcNAc transferase that initiates the synthesis of Lewis antigens onto the heptan motif. Comparative genomic analysis of G27 lipopolysaccharide biosynthetic genes in strains of different ethnic origin revealed that East-Asian strains lack the HP1283/HP1578 genes but contain an additional copy of HP1105 and JHP0562. Further correlation of different lipopolysaccharide structures with corresponding gene contents led us to propose that the second copy of HP1105 and the JHP0562 may function as the GlcNAc and Gal transferase, respectively, to initiate synthesis of the Lewis antigen onto the Glc-Trio-Core in East-Asian strains lacking the HP1283/HP1578 genes. In view of the high gastric cancer rate in East Asia, the absence of the HP1283/HP1578 genes in East-Asian H. pylori strains warrants future studies addressing the role of the lipopolysaccharide heptan in pathogenesis.


Assuntos
Infecções por Helicobacter/genética , Lipopolissacarídeos/genética , Antígenos O/genética , Neoplasias Gástricas/genética , Povo Asiático , Fucosiltransferases/genética , Fucosiltransferases/imunologia , Glucanos/genética , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Humanos , Antígenos do Grupo Sanguíneo de Lewis/genética , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Mutagênese , Antígenos O/imunologia , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia
11.
Gut Pathog ; 11: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820249

RESUMO

BACKGROUND: Helicobacter pylori is a Gram-negative bacterium which mainly causes peptic ulcer disease in human, but is also the predominant cause of stomach cancer. It has been coevolving with human since 120,000 years and, according to Multi-locus sequence typing (MLST), H. pylori can be classified into seven major population types, namely, hpAfrica1, hpAfrica2, hpNEAfrica, hpEastAsia, hpAsia2, hpEurope and hpSahul. Helicobacter pylori harbours a large number of restriction-modification (R-M) systems. The methyltransferase (MTase) unit plays a significant role in gene regulation and also possibly modulates pathogenicity. The diversity in MTase can act as geomarkers to correlate strains with the phylogeographic origins. This paper describes the complete genome sequence and methylome of gastric pathogen H. pylori belonging to the population hpNEAfrica. RESULTS: In this paper, we present the complete genome sequence and the methylome profile of H. pylori hpNEAfrica strain HP14039, isolated from a patient who was born in Somalia and likely to be infected locally during early childhood prior to migration. The genome of HP14039 consists of 1,678,260 bp with 1574 coding genes and 38.7% GC content. The sequence analysis showed that this strain lacks the cag pathogenicity island. The vacA gene is of S2M2 type. We have also identified 15 methylation motifs, including WCANHNNNNTG and CTANNNNNNNTAYG that were not previously described. CONCLUSIONS: We have described the complete genome of H. pylori strain HP14039. The information regarding phylo-geography, methylome and associated metadata would help scientific community to study more about hpNEAfrica population type.

12.
Helicobacter ; 24(1): e12544, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30324717

RESUMO

BACKGROUND: Helicobacter pylori, gastric cancer-causing bacteria, survive in their gastric environment of more than 50% of the world population. The presence of H. pylori in the gastric vicinity promotes the development of various diseases including peptic ulcer and gastric carcinoma. H. pylori produce and secret Vacuolating cytotoxin A (VacA), a major toxin facilitating the bacteria against the host defense system. The toxin causes multiple effects in epithelial cells and immune cells, especially T cells, B cells, and Macrophages. METHODS: This review describes the diverse functionalities of protein toxin VacA. The specific objective of this review is to address the overall structure, mechanism, and functions of VacA in various cell types. The recent advancements are summarized and discussed and thus conclusion is drawn based on the overall reported evidences. RESULTS: The searched articles on H. pylori VacA were evaluated and limited up to 66 articles for this review. The articles were divided into four major categories including articles on vacA gene, VacA toxin, distinct effects of VacA toxin, and their effects on various cells. Based on these studies, the review article was prepared. CONCLUSIONS: This review describes an overview of how VacA is secreted by H. pylori and contributes to colonization and virulence in multiple ways by affecting epithelial cells, T cells, Dendritic cells, B cells, and Macrophages. The reported evidence suggests that the comprehensive outlook need to be developed for understanding distinctive functionalities of VacA.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Helicobacter pylori/química , Helicobacter pylori/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Citotoxinas/química , Citotoxinas/genética , Células Epiteliais , Helicobacter pylori/crescimento & desenvolvimento , Humanos , Linfócitos , Macrófagos , Vacúolos/metabolismo , Virulência
13.
Microb Cell ; 4(5): 175-178, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28685143

RESUMO

H. pylori is a Gram-negative extracellular bacterium, first discovered by the Australian physicians Barry Marshall and Robin Warren in 1982, that colonises the human stomach mucosa. It is the leading cause of peptic ulcer and commonly infects humans worldwide with prevalence as high as 90% in some countries. H. pylori infection usually results in asymptomatic chronic gastritis, however 10-15% of cases develop duodenal or gastric ulcers and 1-3% develop stomach cancer. Infection is generally acquired during childhood and persists for life in the absence of antibiotic treatment. H. pylori has had a long period of co-evolution with humans, going back to human migration out of Africa. This prolonged relationship is likely to have shaped the overall host-pathogen interactions and repertoire of virulence strategies which H. pylori employs to establish robust colonisation, escape immune responses and persist in the gastric niche. In this regard, H. pylori lipopolysaccharide (LPS) is a key surface determinant in establishing colonisation and persistence via host mimicry and resistance to cationic antimicrobial peptides. Thus, elucidation of the H. pylori LPS structure and corresponding biosynthetic pathway represents an important step towards better understanding of H. pylori pathogenesis and the development of novel therapeutic interventions.

14.
PLoS Pathog ; 13(6): e1006464, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28644872

RESUMO

Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress.


Assuntos
Gastrite/genética , Inativação Gênica/fisiologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/genética , Urease/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Doença Crônica , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Expressão Gênica/genética , Camundongos , Neoplasias Gástricas/genética
15.
PLoS Pathog ; 13(3): e1006280, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306723

RESUMO

Helicobacter pylori lipopolysaccharide promotes chronic gastric colonisation through O-antigen host mimicry and resistance to mucosal antimicrobial peptides mediated primarily by modifications of the lipid A. The structural organisation of the core and O-antigen domains of H. pylori lipopolysaccharide remains unclear, as the O-antigen attachment site has still to be identified experimentally. Here, structural investigations of lipopolysaccharides purified from two wild-type strains and the O-antigen ligase mutant revealed that the H. pylori core-oligosaccharide domain is a short conserved hexasaccharide (Glc-Gal-DD-Hep-LD-Hep-LD-Hep-KDO) decorated with the O-antigen domain encompassing a conserved trisaccharide (-DD-Hep-Fuc-GlcNAc-) and variable glucan, heptan and Lewis antigens. Furthermore, the putative heptosyltransferase HP1284 was found to be required for the transfer of the third heptose residue to the core-oligosaccharide. Interestingly, mutation of HP1284 did not affect the ligation of the O-antigen and resulted in the attachment of the O-antigen onto an incomplete core-oligosaccharide missing the third heptose and the adjoining Glc-Gal residues. Mutants deficient in either HP1284 or O-antigen ligase displayed a moderate increase in susceptibility to polymyxin B but were unable to colonise the mouse gastric mucosa. Finally, mapping mutagenesis and colonisation data of previous studies onto the redefined organisation of H. pylori lipopolysaccharide revealed that only the conserved motifs were essential for colonisation. In conclusion, H. pylori lipopolysaccharide is missing the canonical inner and outer core organisation. Instead it displays a short core and a longer O-antigen encompassing residues previously assigned as the outer core domain. The redefinition of H. pylori lipopolysaccharide domains warrants future studies to dissect the role of each domain in host-pathogen interactions. Also enzymes involved in the assembly of the conserved core structure, such as HP1284, could be attractive targets for the design of new therapeutic agents for managing persistent H. pylori infection causing peptic ulcers and gastric cancer.


Assuntos
Helicobacter pylori/química , Helicobacter pylori/patogenicidade , Lipopolissacarídeos/química , Antígenos O/química , Animais , Western Blotting , Cromatografia Gasosa , Modelos Animais de Doenças , Infecções por Helicobacter/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química , Domínios Proteicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
PLoS One ; 7(4): e33310, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511919

RESUMO

In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen, identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to chromosome decatenation, although possible involvement of H. pylori's DNA gyrase and topoisomerase III homologue are also considered. Further analyses of this system should contribute to general understanding of and possibly therapy development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium tuberculosis.


Assuntos
Proteínas de Bactérias/fisiologia , Helicobacter pylori/enzimologia , Recombinases/fisiologia , Recombinação Genética/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Segregação de Cromossomos/genética , Ciprofloxacina/farmacologia , DNA Topoisomerase IV/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Mutação Puntual , Recombinases/química , Recombinases/genética , Recombinação Genética/genética
18.
Med Clin North Am ; 89(2): 313-44, viii, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15656929

RESUMO

Helicobacter pylori infection may be the most common chronic bacterial infection worldwide; however, the prevalence varies between countries and is usually linked to socioeconomic conditions. Gastric cancer is one of the most frequent cancers in developing countries and usually about the seventh most common in developed countries. This article explores the relation of H. pylori to gastric adenocarcinoma and lymphoma. The pathophysiology, epidemiology, screening, clinical presentation, treatment, and prevention are discussed.


Assuntos
Adenocarcinoma/microbiologia , Infecções por Helicobacter/complicações , Helicobacter pylori , Linfoma/microbiologia , Neoplasias Gástricas/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/fisiopatologia , Humanos
19.
Antimicrob Agents Chemother ; 47(12): 3780-3, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14638482

RESUMO

Nitazoxanide (NTZ) is an antibiotic with microbiological characteristics similar to those of metronidazole but without an apparent problem of resistance. The aim of this study was the prospective evaluation of NTZ given as a single agent in the treatment of Helicobacter pylori infection. Twenty culture-positive patients with dyspepsia who had previously failed at least one course of H. pylori eradication therapy were enrolled. Subjects received 1 g of NTZ twice daily for 10 days. The safety and tolerability of the drug were assessed by physical examination, monitoring of adverse events, and clinical laboratory evaluation. Urea breath tests (UBTs) were performed 6 weeks posttreatment. H. pylori was isolated from UBT-positive patients by the string test or endoscopy with biopsy, and the MICs for these isolates were compared to those for isolates obtained pretherapy. The levels of tizoxanide, the active deacylated derivative of NTZ, were measured in blood, saliva, and tissue from two patients during treatment. The UBT results were positive for all 20 patients after completion of NTZ therapy. The MIC results demonstrated that the NTZ susceptibilities of none of the strains isolated from the patients posttherapy had changed significantly. No major adverse reactions were observed, but frequent minor side effects were observed. In conclusion, NTZ did not eradicate H. pylori when it was given as a single agent.


Assuntos
Anti-Infecciosos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Tiazóis/uso terapêutico , Adulto , Idoso , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/farmacocinética , Biotransformação , Testes Respiratórios , Quimioterapia Combinada , Inibidores Enzimáticos/uso terapêutico , Feminino , Infecções por Helicobacter/microbiologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nitrocompostos , Inibidores da Bomba de Prótons , Tiazóis/efeitos adversos , Tiazóis/sangue , Tiazóis/metabolismo , Tiazóis/farmacocinética , Ureia/metabolismo
20.
J Gastroenterol Hepatol ; 17(2): 127-30, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11966940

RESUMO

BACKGROUND AND AIMS: The CLOtest and other rapid urease detection kits are widely used in the endoscopic diagnosis of Helicobacter pylori. A new formulation CLOtest has been developed with the goal of obtaining a positive result more rapidly. The aims of this study were to validate the sensitivity and specificity of the new test and compare the time taken for a positive result to be visible in both the new and standard CLOtest. METHODS: Patients presenting for endoscopy at three Western Australian hospitals were prospectively enrolled. Gastric mucosal biopsies were obtained for the standard and new CLOtest and for histology. Grading of color change was conducted by staff blinded to the type of CLOtest used and conducted according to a standardized color chart. Helicobacter pylori status was defined by the combination of a positive standard CLOtest and histology, against which the new CLOtest was compared. Results were obtained at 1, 3 and 24 h, and at one center, at 10 min intervals for the first hour. RESULTS: Three hundred and thirty-five patients were enrolled. Eighty-eight Helicobacter pylori-positive individuals were identified. At 24 h, the new test correctly identified all 88, with one false-positive result (sensitivity 100%, specificity 99.6%). At 1 h, sensitivity was 93% with a number of early false-positive results reducing specificity to 96%. Compared to the current CLOtest, the new formulation became positive faster at 20 min (P = 0.001, n = 51), but was similar at 1 h (P = 0.06, n = 88) and equivalent at 3 h. CONCLUSIONS: The new formulation CLOtest is sensitive and specific, with a trend to give early positive results more quickly, although accuracy at 3 and 24 h is the same.


Assuntos
Infecções por Helicobacter/diagnóstico , Helicobacter pylori/isolamento & purificação , Kit de Reagentes para Diagnóstico , Gastropatias/diagnóstico , Urease/análise , Biópsia por Agulha , Método Duplo-Cego , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastroscopia , Infecções por Helicobacter/patologia , Helicobacter pylori/enzimologia , Humanos , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Gastropatias/microbiologia , Gastropatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA