Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Microbiol Spectr ; : e0078724, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916354

RESUMO

Elexacaftor/tezacaftor/ivacaftor (ETI) therapy has revolutionized the treatment of cystic fibrosis (CF) for most affected individuals but the effects of treatment on sinus microbiota are still unknown. Changes to the airway microbiota in CF are associated with disease state and alterations to the bacterial community after ETI initiation may require changes to clinical management regimens. We collected sinus swab samples from the middle meatus in an observational study of 38 adults with CF and chronic rhinosinusitis (CRS) from 2017 to 2021 and captured the initiation of ETI therapy. We performed 16S and custom amplicon sequencing to characterize the sinus microbiota pre- and post-ETI. Real-time quantitative PCR (RT-qPCR) was performed to estimate total bacterial abundance. Sinus samples from people with CF (pwCF) clustered into three community types, dependent on the dominant bacterial organism: a Pseudomonas-dominant, Staphylococcus-dominant, and mixed dominance cluster. Shannon's diversity index was low and not significantly altered post-ETI. Total bacterial load was not significantly lowered post-ETI. Pseudomonas spp. abundance was significantly reduced post-ETI, but eradication was not observed. Staphylococcus spp. became the dominant organism in most individuals post-ETI and we showed the presence of methicillin-resistant Staphylococcus aureus (MRSA) in the sinus both pre- and post-ETI. We also demonstrated that the sinus microbiome is predictive of the presence of Pseudomonas spp., Staphylococcus spp., and Serratia spp. in the sputum. Pseudomonas spp. and Staphylococcus spp., including MRSA, persist in the sinuses of pwCF after ETI therapy, indicating that these pathogens will continue to be important in CF airway disease management in the era of highly effective modulator therapies (HEMT).IMPORTANCEHighly effective modulator therapies (HEMT), such as elexacaftor/tezacaftor/ivacaftor (ETI), for cystic fibrosis (CF) have revolutionized patient care and quality of life for most affected individuals. The effects of these therapies on the microbiota of the airways are still unclear, though work has already been published on changes to microbiota in the sputum. Our study presents evidence for reduced relative abundance of Pseudomonas spp. in the sinuses following ETI therapy. We also show that Staphylococcus spp. becomes the dominant organism in the sinus communities of most individuals in this cohort after ETI therapy. We identified methicillin-resistant Staphylococcus aureus (MRSA) in the sinus microbiota both pre- and post-therapy. These findings demonstrate that pathogen monitoring and treatment will remain a vital part of airway disease management for people with cystic fibrosis (pwCF) in the era of HEMT.

2.
Protein Sci ; 33(6): e5016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747381

RESUMO

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


Assuntos
Proteínas 14-3-3 , Sistema Livre de Células , Nanoestruturas , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanoestruturas/química , Ligação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Eur J Cell Biol ; 103(2): 151414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640594

RESUMO

The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.


Assuntos
GTP Fosfo-Hidrolases , Guanosina Trifosfato , Proteínas de Membrana , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Humanos , Guanosina Trifosfato/metabolismo , Cristalografia por Raios X , Ligantes , Mutação , Modelos Moleculares
4.
mBio ; 15(5): e0051924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564694

RESUMO

Today, more than 90% of people with cystic fibrosis (pwCF) are eligible for the highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy called elexacaftor/tezacaftor/ivacaftor (ETI) and its use is widespread. Given the drastic respiratory symptom improvement experienced by many post-ETI, clinical studies are already underway to reduce the number of respiratory therapies, including antibiotic regimens, that pwCF historically relied on to combat lung disease progression. Early studies suggest that bacterial burden in the lungs is reduced post-ETI, yet it is unknown how chronic Pseudomonas aeruginosa populations are impacted by ETI. We found that pwCF remain infected throughout their upper and lower respiratory tract with their same strain of P. aeruginosa post-ETI, and these strains continue to evolve in response to the newly CFTR-corrected airway. Our work underscores the continued importance of CF airway microbiology in the new era of highly effective CFTR modulator therapy. IMPORTANCE: The highly effective cystic fibrosis transmembrane conductance regulator modulator therapy Elexakaftor/Tezacaftor/Ivacaftor (ETI) has changed cystic fibrosis (CF) disease for many people with cystic fibrosis. While respiratory symptoms are improved by ETI, we found that people with CF remain infected with Pseudomonas aeruginosa. How these persistent and evolving bacterial populations will impact the clinical manifestations of CF in the coming years remains to be seen, but the role and potentially changing face of infection in CF should not be discounted in the era of highly effective modulator therapy.


Assuntos
Aminofenóis , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Combinação de Medicamentos , Indóis , Infecções por Pseudomonas , Pseudomonas aeruginosa , Quinolonas , Fibrose Cística/microbiologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/complicações , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Benzodioxóis/uso terapêutico , Indóis/uso terapêutico , Pirazóis/uso terapêutico , Pirróis/uso terapêutico , Piridinas/uso terapêutico , Tiofenos/uso terapêutico , Tiofenos/farmacologia , Feminino , Quinolinas
5.
Nat Commun ; 15(1): 2202, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485927

RESUMO

Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Tirosina/análogos & derivados , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Tirosina/metabolismo , Proteínas Virais de Fusão , Infecções por Vírus Respiratório Sincicial/prevenção & controle
6.
J Clin Gastroenterol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38277501

RESUMO

BACKGROUND AND AIMS: The application of endoscopic suturing has revolutionized defect closures. Conventional over-the-scope suturing necessitates removal of the scope, placement of the device, and reinsertion. A single channel, single sequence, through-the-scope suturing device has been developed to improve this process. This study aims to describe the efficacy, feasibility, and safety of a through-the-scope suturing device for gastrointestinal defect closure. METHODS: This was a retrospective multicenter study involving 9 centers of consecutive adult patients who underwent suturing using the X-Tack Endoscopic HeliX Tacking System (Apollo Endosurgery). The primary outcomes were technical success and long-term clinical success. Secondary outcomes included adverse events, recurrence, and reintervention rates. RESULTS: In all, 56 patients (mean age 53.8, 33 women) were included. Suturing indications included fistula repair (n=22), leak repair (n=7), polypectomy defect closure (n=12), peroral endoscopic myotomy (POEM) site closure (n=7), perforation repair (n=6), and ulcers (n=2). Patients were followed at a mean duration of 74 days. Overall technical and long-term clinical success rates were 92.9% and 75%, respectively. Both technical and clinical success rates were 100% for polypectomies, POEM-site closures, and ulcers. Success rates were lower for the repair of fistulas (95.5% technical, 54.5% clinical), leaks (57.1%, 28.6%), and perforations (100%, 66.7%). No immediate adverse events were noted. CONCLUSION: This novel, through-the-scope endoscopic suturing system, is a safe and feasible method to repair defects that are ≤3 cm. The efficacy of this device may be better suited for superficial defects as opposed to full-thickness defects. Larger defects will need more sutures and probably a double closure technique to provide a reinforcement layer.

7.
Elife ; 122023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150309

RESUMO

Annual cycles in daylength provide an initial predictive environmental cue that plants and animals use to time seasonal biology. Seasonal changes in photoperiodic information acts to entrain endogenous programs in physiology to optimize an animal's fitness. Attempts to identify the neural and molecular substrates of photoperiodic time measurement in birds have, to date, focused on blunt changes in light exposure during a restricted period of photoinducibility. The objectives of these studies were first to characterize a molecular seasonal clock in Japanese quail and second, to identify the key transcripts involved in endogenously generated interval timing that underlies photosensitivity in birds. We hypothesized that the mediobasal hypothalamus (MBH) provides the neuroendocrine control of photoperiod-induced changes in reproductive physiology, and that the pars distalis of the pituitary gland contains an endogenous internal timer for the short photoperiod-dependent development of reproductive photosensitivity. Here, we report distinct seasonal waveforms of transcript expression in the MBH, and pituitary gland and discovered the patterns were not synchronized across tissues. Follicle-stimulating hormone-ß (FSHß) expression increased during the simulated spring equinox, prior to photoinduced increases in prolactin, thyrotropin-stimulating hormone-ß, and testicular growth. Diurnal analyses of transcript expression showed sustained elevated levels of FSHß under conditions of the spring equinox, compared to autumnal equinox, short (<12L) and long (>12L) photoperiods. FSHß expression increased in quail held in non-stimulatory short photoperiod, indicative of the initiation of an endogenously programmed interval timer. These data identify that FSHß establishes a state of photosensitivity for the external coincidence timing of seasonal physiology. The independent regulation of FSHß expression provides an alternative pathway through which other supplementary environmental cues, such as temperature, can fine tune seasonal reproductive maturation and involution.


Assuntos
Coturnix , Subunidade beta do Hormônio Folículoestimulante , Fotoperíodo , Reprodução , Coturnix/fisiologia , Subunidade beta do Hormônio Folículoestimulante/fisiologia , Estações do Ano , Masculino , Animais
8.
Artigo em Inglês | MEDLINE | ID: mdl-37693092

RESUMO

Background: Artificial intelligence (AI) holds potential in improving medical education and healthcare delivery. ChatGPT is a state-of-the-art natural language processing AI model which has shown impressive capabilities, scoring in the top percentiles on numerous standardized examinations, including the Uniform Bar Exam and Scholastic Aptitude Test. The goal of this study was to evaluate ChatGPT performance on the Orthopaedic In-Training Examination (OITE), an assessment of medical knowledge for orthopedic residents. Methods: OITE 2020, 2021, and 2022 questions without images were inputted into ChatGPT version 3.5 and version 4 (GPT-4) with zero prompting. The performance of ChatGPT was evaluated as a percentage of correct responses and compared with the national average of orthopedic surgery residents at each postgraduate year (PGY) level. ChatGPT was asked to provide a source for its answer, which was categorized as being a journal article, book, or website, and if the source could be verified. Impact factor for the journal cited was also recorded. Results: ChatGPT answered 196 of 360 answers correctly (54.3%), corresponding to a PGY-1 level. ChatGPT cited a verifiable source in 47.2% of questions, with an average median journal impact factor of 5.4. GPT-4 answered 265 of 360 questions correctly (73.6%), corresponding to the average performance of a PGY-5 and exceeding the corresponding passing score for the American Board of Orthopaedic Surgery Part I Examination of 67%. GPT-4 cited a verifiable source in 87.9% of questions, with an average median journal impact factor of 5.2. Conclusions: ChatGPT performed above the average PGY-1 level and GPT-4 performed better than the average PGY-5 level, showing major improvement. Further investigation is needed to determine how successive versions of ChatGPT would perform and how to optimize this technology to improve medical education. Clinical Relevance: AI has the potential to aid in medical education and healthcare delivery.

9.
Protein Expr Purif ; 212: 106361, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652393

RESUMO

DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility. To overcome this solubility issue, we engineered a DiRAS3 variant (C75S/C80S), which significantly improved soluble protein expression in E. coli. Recombinant DiRAS3 was purified by Ni-NTA and size exclusion chromatography (SEC). Concentration dependence of the SEC chromatogram indicated that DiRAS3 exists in monomer-dimer equilibrium. We then produced truncations of the N-terminal (ΔN) and both (ΔNC) extensions to the GTPase domain. Unlike full-length DiRAS3, the SEC profiles showed that ΔNC is monomeric while ΔN was monomeric with aggregation, suggesting that the N and/or C-terminal tail(s) contribute to dimerization and aggregation. The 1H-15N HSQC NMR spectrum of ΔNC construct displayed well-dispersed peaks similar to spectra of other GTPase domains, which enabled us to demonstrate that DiRAS3 has a GTPase domain that can bind GDP and GTP. Taken together, we conclude that, despite the substitutions in the G-box motifs, DiRAS3 can switch between nucleotide-bound states and that the N- and C-terminal extensions interact transiently with the GTPase domain in intra- and inter-molecular fashions, mediating weak multimerization of this unique small GTPase.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas ras , Escherichia coli/genética , Aminoácidos , Biofísica
10.
Angew Chem Int Ed Engl ; 62(18): e202218698, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36883374

RESUMO

KRAS is a peripheral membrane protein that regulates multiple signaling pathways, and is mutated in ≈30 % of cancers. Transient self-association of KRAS is essential for activation of the downstream effector RAF and oncogenicity. The presence of anionic phosphatidylserine (PS) lipids in the membrane was shown to promote KRAS self-assembly, however, the structural mechanisms remain elusive. Here, we employed nanodisc bilayers of defined lipid compositions, and probed the impact of PS concentration on KRAS self-association. Paramagnetic NMR experiments demonstrated the existence of two transient dimer conformations involving alternate electrostatic contacts between R135 and either D153 or E168 on the "α4/5-α4/5" interface, and revealed that lipid composition and salt modulate their dynamic equilibrium. These dimer interfaces were validated by charge-reversal mutants. This plasticity demonstrates how the dynamic KRAS dimerization interface responds to the environment, and likely extends to the assembly of other signaling complexes on the membrane.


Assuntos
Bicamadas Lipídicas , Proteínas Proto-Oncogênicas p21(ras) , Bicamadas Lipídicas/química , Eletricidade Estática , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas/metabolismo , Conformação Molecular
11.
J Mol Biol ; 434(9): 167527, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257782

RESUMO

Ral Guanine Nucleotide Dissociation Stimulator Like 1 (RGL1) is a RAS effector protein that activates Ral GTPase by stimulating nucleotide exchange. Most structures of RAS-effector complexes are for the HRAS isoform; relatively few KRAS-effector structures have been solved, even though KRAS mutations are more frequent in human cancers. We determined crystal structures of KRAS/RGL1-RAS-association (RA) domain complexes and characterized the interaction in solution using nuclear magnetic resonance spectroscopy, size-exclusion chromatography combined with multi-angle light scattering and biolayer interferometry. We report structures of wild-type KRAS and the oncogenic G12V mutant in complex with the RA domain of RGL1 at < 2 Å resolution. KRASWT/RGL1-RA crystallized as a 1:1 heterodimer, whilst KRASG12V/RGL1-RA crystallized as a heterotetrameric structure in which RGL1-RA dimerized via domain-swapping the C-terminal beta-strand. Solution data indicated that KRASWT and KRASG12V in complex with RGL1-RA both exist predominantly as 1:1 dimers, while tetramerization occurs through very slow association. Through detailed structural analyses, the distance and angle between RAS α1 helix and RBD/RA α1 helix were found to differ significantly among RAS and RBD/RA complexes. The KRAS/RGL1-RA structures possess some of the largest α1RAS/α1Effector distances (21.7-22.2 Å), whereas the corresponding distances in previously reported RAS/RAF complexes are significantly shorter (15.2-17.7 Å). Contact map analysis identified unique structural signatures involving contacts between the ß1-ß2 loop of RA and the α1 helix of RAS, clearly distinguishing the KRAS/RGL1-RA (and other RAS/RA complexes) from RAS/RBD complexes. These results demonstrate that RAS effectors employ an assortment of finely-tuned docking surfaces to achieve optimal interactions with RAS.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Mutação , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
Gastrointest Endosc ; 95(2): 373-382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695421

RESUMO

BACKGROUND AND AIMS: Closure of endoscopic resection defects can be achieved with through-the-scope clips, over-the-scope clips, or endoscopic suturing. However, these devices are often limited by their inability to close large, irregular, and difficult-to-reach defects. Thus, we aimed to assess the feasibility and safety of a novel through-the-scope, suture-based closure system developed to overcome these limitations. METHODS: This was a retrospective multicenter study involving 8 centers in the United States. Primary outcomes were feasibility and safety of early use of the device. Secondary outcomes were assessment of need for additional closure devices, prolonged procedure time, and technical feasibility of performing the procedure with an alternative device(s). RESULTS: Ninety-three patients (48.4% women) with mean age 63.6 ± 13.1 years were included. Technical success was achieved in 83 patients (89.2%), and supplemental closure was required in 24.7% of patients (n = 23) with a mean defect size of 41.6 ± 19.4 mm. Closure with an alternative device was determined to be impossible in 24.7% of patients because of location, size, or shape of the defect. The use of the tack and suture device prolonged the procedure in 8.6% of cases but was considered acceptable. Adverse events occurred in 2 patients (2.2%) over a duration of follow-up of 34 days (interquartile range, 13-93.5) and were mild and moderate in severity. No serious adverse events or procedure-related deaths occurred. CONCLUSIONS: The novel endoscopic through-the-scope tack and suture system is safe, efficient, and permits closure of large and irregularly shaped defects that were not possible with established devices.


Assuntos
Endoscopia Gastrointestinal , Técnicas de Sutura , Idoso , Endoscopia Gastrointestinal/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Stents , Suturas , Resultado do Tratamento
13.
J Thorac Oncol ; 17(2): 277-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648945

RESUMO

INTRODUCTION: Mutations in BRAF occur in 2% to 4% of patients with lung adenocarcinoma. Combination dabrafenib and trametinib, or single-agent vemurafenib is approved only for patients with cancers driven by the V600E BRAF mutation. Targeted therapy is not currently available for patients harboring non-V600 BRAF mutations. METHODS: A lung adenocarcinoma patient-derived xenograft model (PHLC12) with wild-type and nonamplified EGFR was tested for response to EGFR tyrosine kinase inhibitors (TKIs). A cell line derived from this model (X12CL) was also used to evaluate drug sensitivity and to identify potential drivers by small interfering RNA knockdown. Kinase assays were used to test direct targeting of the candidate driver by the EGFR TKIs. Structural modeling including, molecular dynamics simulations, and binding assays were conducted to explore the mechanism of off-target inhibition by EGFR TKIs on the model 12 driver. RESULTS: Both patient-derived xenograft PHLC12 and the X12CL cell line were sensitive to multiple EGFR TKIs. The BRAFG469V mutation was found to be the only known oncogenic mutation in this model. Small interfering RNA knockdown of BRAF, but not the EGFR, killed X12CL, confirming BRAFG469V as the oncogenic driver. Kinase activity of the BRAF protein isolated from X12CL was inhibited by treatment with the EGFR TKIs gefitinib and osimertinib, and expression of BRAFG469V in non-EGFR-expressing NR6 cells promoted growth in low serum condition, which was also sensitive to EGFR TKIs. Structural modeling, molecular dynamic simulations, and in vitro binding assays support BRAFG469V being a direct target of the TKIs. CONCLUSIONS: Clinically approved EGFR TKIs can be repurposed to treat patients with non-small cell lung cancer harboring the BRAFG469V mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
14.
Nat Commun ; 12(1): 6274, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725361

RESUMO

Cancer cells bearing distinct KRAS mutations exhibit variable sensitivity to SHP2 inhibitors (SHP2i). Here we show that cells harboring KRAS Q61H are uniquely resistant to SHP2i, and investigate the underlying mechanisms using biophysics, molecular dynamics, and cell-based approaches. Q61H mutation impairs intrinsic and GAP-mediated GTP hydrolysis, and impedes activation by SOS1, but does not alter tyrosyl phosphorylation. Wild-type and Q61H-mutant KRAS are both phosphorylated by Src on Tyr32 and Tyr64 and dephosphorylated by SHP2, however, SHP2i does not reduce ERK phosphorylation in KRAS Q61H cells. Phosphorylation of wild-type and Gly12-mutant KRAS, which are associated with sensitivity to SHP2i, confers resistance to regulation by GAP and GEF activities and impairs binding to RAF, whereas the near-complete GAP/GEF-resistance of KRAS Q61H remains unaltered, and high-affinity RAF interaction is retained. SHP2 can stimulate KRAS signaling by modulating GEF/GAP activities and dephosphorylating KRAS, processes that fail to regulate signaling of the Q61H mutant.


Assuntos
Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Guanosina Trifosfato/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Mutação de Sentido Incorreto , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
15.
Cell Rep ; 37(3): 109829, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686349

RESUMO

Pseudomonas aeruginosa notoriously adapts to the airways of people with cystic fibrosis (CF), yet how infection-site biogeography and associated evolutionary processes vary as lifelong infections progress remains unclear. Here we test the hypothesis that early adaptations promoting aggregation influence evolutionary-genetic trajectories by examining longitudinal P. aeruginosa from the sinuses of six adults with CF. Highly host-adapted lineages harbored mutator genotypes displaying signatures of early genome degradation associated with recent host restriction. Using an advanced imaging technique (MiPACT-HCR [microbial identification after passive clarity technique]), we find population structure tracks with genome degradation, with the most host-adapted, genome-degraded P. aeruginosa (the mutators) residing in small, sparse aggregates. We propose that following initial adaptive evolution in larger populations under strong selection for aggregation, P. aeruginosa persists in small, fragmented populations that experience stronger effects of genetic drift. These conditions enrich for mutators and promote degenerative genome evolution. Our findings underscore the importance of infection-site biogeography to pathogen evolution.


Assuntos
Fibrose Cística/microbiologia , Evolução Molecular , Genoma Bacteriano , Mutação , Seios Paranasais/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Adulto , Linhagem Celular , Fibrose Cística/diagnóstico , Feminino , Deriva Genética , Genótipo , Humanos , Estudos Longitudinais , Masculino , Fenótipo , Filogenia , Estudos Prospectivos , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/crescimento & desenvolvimento
16.
Chem Sci ; 12(38): 12827-12837, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703570

RESUMO

KRAS forms transient dimers and higher-order multimers (nanoclusters) on the plasma membrane, which drive MAPK signaling and cell proliferation. KRAS is a frequently mutated oncogene, and while it is well known that the most prevalent mutation, G12D, impairs GTP hydrolysis, thereby increasing KRAS activation, G12D has also been shown to enhance nanoclustering. Elucidating structures of dynamic KRAS assemblies on a membrane has been challenging, thus we have refined our NMR approach that uses nanodiscs to study KRAS associated with membranes. We incorporated paramagnetic relaxation enhancement (PRE) titrations and interface mutagenesis, which revealed that, in addition to the symmetric 'α-α' dimerization interface shared with wild-type KRAS, the G12D mutant also self-associates through an asymmetric 'α-ß' interface. The 'α-ß' association is dependent on the presence of phosphatidylserine lipids, consistent with previous reports that this lipid promotes KRAS self-assembly on the plasma membrane in cells. Experiments using engineered mutants to spoil each interface, together with PRE probes attached to the membrane or free in solvent, suggest that dimerization through the primary 'α-α' interface releases ß interfaces from the membrane promoting formation of the secondary 'α-ß' interaction, potentially initiating nanoclustering. In addition, the small molecule BI-2852 binds at a ß-ß interface, stabilizing a new dimer configuration that outcompetes native dimerization and blocks the effector-binding site. Our data indicate that KRAS self-association involves a delicately balanced conformational equilibrium between transient states, which is sensitive to disease-associated mutation and small molecule inhibitors. The methods developed here are applicable to biologically important transient interactions involving other membrane-associated proteins.

17.
mBio ; 12(4): e0182321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372701

RESUMO

Bacteria in the Burkholderia cepacia complex (BCC) are significant pathogens for people with cystic fibrosis (CF) and are often extensively antibiotic resistant. Here, we assess the impacts of clinically observed mutations in fixL, which encodes the sensor histidine kinase FixL. FixL along with FixJ compose a two-component system that regulates multiple phenotypes. Mutations in fixL across two species, B. dolosa and B. multivorans, have shown evidence of positive selection during chronic lung infection in CF. Herein, we find that BCC carrying the conserved, ancestral fixL sequence have lower survival in macrophages and in murine pneumonia models than mutants carrying evolved fixL sequences associated with clinical decline in CF patients. In vitro phosphotransfer experiments found that one evolved FixL protein, W439S, has a reduced ability to autophosphorylate and phosphorylate FixJ, while LacZ reporter experiments demonstrate that B. dolosa carrying evolved fixL alleles has reduced fix pathway activity. Interestingly, B. dolosa carrying evolved fixL alleles was less fit in a soil assay than those strains carrying the ancestral allele, demonstrating that increased survival of these variants in macrophages and the murine lung comes at a potential expense in their environmental reservoir. Thus, modulation of the two-component system encoded by fixLJ by point mutations is one mechanism that allows BCC to adapt to the host infection environment. IMPORTANCE Infections caused by members of the Burkholderia cepacia complex (BCC) are a serious concern for patients with cystic fibrosis (CF) as these bacteria are often resistant to many antibiotics. During long-term infection of CF patients with BCC, mutations in genes encoding the FixLJ system often become prevalent, suggesting that these changes may benefit the bacteria during infection. The system encoded by fixLJ is involved in sensing oxygen and regulating many genes in response and is required for full virulence of the bacteria in a murine pneumonia model. Evolved fixL mutations seen later in infection improve bacterial persistence within macrophages and enhance infection within mice. However, these adaptations are short sighted because they reduce bacterial fitness within their natural habitat, soil.


Assuntos
Burkholderia/genética , Burkholderia/patogenicidade , Evolução Molecular , Mutação Puntual , Animais , Proteínas de Bactérias/genética , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia , Feminino , Histidina Quinase/genética , Humanos , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Pneumonia/microbiologia , Estudos Retrospectivos , Células THP-1 , Virulência
18.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34128958

RESUMO

Rab11 GTPase proteins are required for cytokinesis, ciliogenesis, and lumenogenesis. Rab11a is critical for apical delivery of podocalyxin (PODXL) during lumen formation in epithelial cells. SH3BP5 and SH3BP5L are guanine nucleotide exchange factors (GEFs) for Rab11. We show that SH3BP5 and SH3BP5L are required for activation of Rab11a and cyst lumen formation. Using proximity-dependent biotin identification (BioID) interaction proteomics, we have identified SH3BP5 and its paralogue SH3BP5L as new substrates of the poly-ADP-ribose polymerase Tankyrase and the E3 ligase RNF146. We provide data demonstrating that epithelial polarity via cyst lumen formation is governed by Tankyrase, which inhibits Rab11a activation through the suppression of SH3BP5 and SH3BP5L. RNF146 reduces Tankyrase protein abundance and restores Rab11a activation and lumen formation. Thus, Rab11a activation is controlled by a signaling pathway composed of the sequential inhibition of SH3BP5 paralogues by Tankyrase, which is itself suppressed by RNF146.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Sialoglicoproteínas/genética , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina , Humanos , Ligação Proteica , Transdução de Sinais/genética , Tanquirases/genética
19.
Int J Qual Health Care ; 33(1)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33306102

RESUMO

OBJECTIVE: To explore differences in position emission tomography-computed tomography (PET-CT) service provision internationally to further understand the impact variation may have upon cancer services. To identify areas of further exploration for researchers and policymakers to optimize PET-CT services and improve the quality of cancer services. DESIGN: Comparative analysis using data based on pre-defined PET-CT service metrics from PET-CT stakeholders across seven countries. This was further informed via document analysis of clinical indication guidance and expert consensus through round-table discussions of relevant PET-CT stakeholders. Descriptive comparative analyses were produced on use, capacity and indication guidance for PET-CT services between jurisdictions. SETTING: PET-CT services across 21 jurisdictions in seven countries (Australia, Denmark, Canada, Ireland, New Zealand, Norway and the UK). PARTICIPANTS: None. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): None. RESULTS: PET-CT service provision has grown over the period 2006-2017, but scale of increase in capacity and demand is variable. Clinical indication guidance varied across countries, particularly for small-cell lung cancer staging and the specific acknowledgement of gastric cancer within oesophagogastric cancers. There is limited and inconsistent data capture, coding, accessibility and availability of PET-CT activity across countries studied. CONCLUSIONS: Variation in PET-CT scanner quantity, acquisition over time and guidance upon use exists internationally. There is a lack of routinely captured and accessible PET-CT data across the International Cancer Benchmarking Partnership countries due to inconsistent data definitions, data linkage issues, uncertain coverage of data and lack of specific coding. This is a barrier in improving the quality of PET-CT services globally. There needs to be greater, richer data capture of diagnostic and staging tools to facilitate learning of best practice and optimize cancer services.


Assuntos
Benchmarking , Neoplasias , Austrália , Canadá , Humanos , Irlanda , Neoplasias/diagnóstico por imagem , Nova Zelândia , Noruega , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
20.
Vaccine ; 38(50): 7885-7891, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33129608

RESUMO

Respiratory syncytial virus (RSV) commonly causes severe respiratory tract infections in infants, peaking between 2 and 6 months of age; an age at which direct vaccination is unlikely to be effective. Maternal immunization can deliver high levels of antibodies to newborns, providing immediate protection. Following natural infection, antibodies targeting the prefusion conformation of RSV F protein (PreF) have the greatest neutralizing capacity and thus, may provide infants with a high degree of RSV protection when acquired through maternal vaccination. However, the influence of anti-PreF maternal antibodies on infant immunity following RSV exposure has not been elucidated. To address this knowledge gap, offspring born to dams immunized with a RSV PreF vaccine formulation were challenged with RSV and their immune responses were analyzed over time. These studies demonstrated safety and efficacy for RSV-challenged, maternally-immunized offspring but high and waning maternal antibody levels were associated with differential innate and T cell immunity.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunização , Lactente , Recém-Nascido , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Linfócitos T , Vacinação , Proteínas Virais de Fusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA