Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plast Reconstr Surg ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548707

RESUMO

BACKGROUND: Nerve xenografts harvested from transgenic α1,3-galactosyltransferase knockout (GalT-KO) pigs lack the epitope responsible for hyperacute rejection in pig-to-primate transplants. It is unknown whether these cold preserved nerve grafts support axonal regeneration in another species during and after immunosuppression. In this study, we compare outcomes between autografts and cold preserved xenografts in a rat sciatic model of nerve gap repair. METHODS: Fifty male Lewis rats had a 1 cm sciatic nerve defect repaired using either: autograft and suture (n=10); 1-week or 4-week cold preserved xenograft and suture (n=10 per group); 1-week or 4-week cold preserved xenograft and photochemical tissue bonding using a human amnion wrap (PTB/HAM) (n=10 per group). Rats with xenografts were given tacrolimus until 4 months post-operatively. At 4 and 7 months, rats were euthanized and nerve sections harvested. Monthly sciatic functional index (SFI) scores were calculated. RESULTS: All groups showed increases in SFI scores by 4 and 7 months. The autograft suture group had the highest axon density at 4 and 7 months. The largest decrease in axon density from 4 to 7 months was in the 1-week cold preserved PTB/HAM group. The only significant difference between group SFI scores occurred at 5 months, when both 1-week cold preserved groups had significantly lower scores than the 4-week cold preserved suture group. CONCLUSIONS: Our results in the rat sciatic model suggest that GalT-KO nerve xenografts may be viable alternatives to autografts and demonstrate the need for further studies of long-gap repair and comparison with acellular nerve allografts. CLINICAL RELEVANCE: This proof-of-concept study in the rat sciatic model demonstrates that cold preserved GalT-KO porcine xenografts support axonal regeneration, as well as axonal viability following immunosuppression withdrawal. These results further suggest a role for both cold preservation and photochemical tissue bonding in modulating the immunological response at the nerve repair site.

2.
Nat Biomed Eng ; 7(12): 1649-1666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845517

RESUMO

The surgical resection of solid tumours can be enhanced by fluorescence-guided imaging. However, variable tumour uptake and incomplete clearance of fluorescent dyes reduces the accuracy of distinguishing tumour from normal tissue via conventional fluorescence intensity-based imaging. Here we show that, after systemic injection of the near-infrared dye indocyanine green in patients with various types of solid tumour, the fluorescence lifetime (FLT) of tumour tissue is longer than the FLT of non-cancerous tissue. This tumour-specific shift in FLT can be used to distinguish tumours from normal tissue with an accuracy of over 97% across tumour types, and can be visualized at the cellular level using microscopy and in larger specimens through wide-field imaging. Unlike fluorescence intensity, which depends on imaging-system parameters, tissue depth and the amount of dye taken up by tumours, FLT is a photophysical property that is largely independent of these factors. FLT imaging with indocyanine green may improve the accuracy of cancer surgeries.


Assuntos
Verde de Indocianina , Neoplasias , Humanos , Fluorescência , Neoplasias/diagnóstico por imagem , Corantes Fluorescentes
4.
Open Forum Infect Dis ; 9(10): ofac499, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36267257

RESUMO

Reported adverse reactions to the mRNA-1273 vaccine (Spikevax, Moderna Inc) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) range from mild, local delayed cutaneous reactions to rarer, more serious reactions such as myocarditis. Here, we describe the presentation and successful treatment of delayed, localized necrotizing inflammatory myositis following a third dose of the mRNA-1273 SARS-CoV-2 vaccine. To our knowledge, this is the first report of biopsy-confirmed, delayed inflammatory myositis after administration of an mRNA-1273 SARS-CoV-2 vaccine booster.

5.
Am J Respir Crit Care Med ; 206(7): 857-873, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671465

RESUMO

Rationale: The leading cause of death in coronavirus disease 2019 (COVID-19) is severe pneumonia, with many patients developing acute respiratory distress syndrome (ARDS) and diffuse alveolar damage (DAD). Whether DAD in fatal COVID-19 is distinct from other causes of DAD remains unknown. Objective: To compare lung parenchymal and vascular alterations between patients with fatal COVID-19 pneumonia and other DAD-causing etiologies using a multidimensional approach. Methods: This autopsy cohort consisted of consecutive patients with COVID-19 pneumonia (n = 20) and with respiratory failure and histologic DAD (n = 21; non-COVID-19 viral and nonviral etiologies). Premortem chest computed tomography (CT) scans were evaluated for vascular changes. Postmortem lung tissues were compared using histopathological and computational analyses. Machine-learning-derived morphometric analysis of the microvasculature was performed, with a random forest classifier quantifying vascular congestion (CVasc) in different microscopic compartments. Respiratory mechanics and gas-exchange parameters were evaluated longitudinally in patients with ARDS. Measurements and Main Results: In premortem CT, patients with COVID-19 showed more dilated vasculature when all lung segments were evaluated (P = 0.001) compared with controls with DAD. Histopathology revealed vasculopathic changes, including hemangiomatosis-like changes (P = 0.043), thromboemboli (P = 0.0038), pulmonary infarcts (P = 0.047), and perivascular inflammation (P < 0.001). Generalized estimating equations revealed significant regional differences in the lung microarchitecture among all DAD-causing entities. COVID-19 showed a larger overall CVasc range (P = 0.002). Alveolar-septal congestion was associated with a significantly shorter time to death from symptom onset (P = 0.03), length of hospital stay (P = 0.02), and increased ventilatory ratio [an estimate for pulmonary dead space fraction (Vd); p = 0.043] in all cases of ARDS. Conclusions: Severe COVID-19 pneumonia is characterized by significant vasculopathy and aberrant alveolar-septal congestion. Our findings also highlight the role that vascular alterations may play in Vd and clinical outcomes in ARDS in general.


Assuntos
COVID-19 , Pneumonia , Síndrome do Desconforto Respiratório , Doenças Vasculares , COVID-19/complicações , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/etiologia
7.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508430

RESUMO

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Assuntos
Galactosilceramidase/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patologia , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Galactosilceramidase/metabolismo , Vetores Genéticos/administração & dosagem , Leucodistrofia de Células Globoides/sangue , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Recidiva
8.
Dis Model Mech ; 12(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31036560

RESUMO

Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingolipidoses/genética , Animais , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lisossomos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Psicosina/farmacologia , Receptor IGF Tipo 1/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingolipidoses/metabolismo
9.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433937

RESUMO

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Assuntos
Metabolismo dos Carboidratos , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Terapia Genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Fenótipo , Animais , Vias Autônomas/metabolismo , Vias Autônomas/patologia , Vias Autônomas/ultraestrutura , Axônios/metabolismo , Axônios/patologia , Axônios/ultraestrutura , Comportamento Animal , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Distribuição Tecidual , Transdução Genética , Resultado do Tratamento
10.
Hum Gene Ther ; 29(7): 785-801, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316812

RESUMO

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an inherited, neurologic disorder that results from deficiency of a lysosomal enzyme, galactosylceramidase. Most commonly, deficits of galactosylceramidase result in widespread central and peripheral nervous system demyelination and death in affected infants typically by 2 years of age. Hematopoietic stem-cell transplantation is the current standard of care in children diagnosed prior to symptom onset. However, disease correction is incomplete. Herein, the first adeno-associated virus (AAV) gene therapy experiments are presented in a naturally occurring canine model of GLD that closely recapitulates the clinical disease progression, neuropathological alterations, and biochemical abnormalities observed in human patients. Adapted from studies in twitcher mice, GLD dogs were treated by combination intravenous and intracerebroventricular injections of AAVrh10 to target both the peripheral and central nervous systems. Combination of intravenous and intracerebroventricular AAV gene therapy had a clear dose response and resulted in delayed onset of clinical signs, extended life-span, correction of biochemical defects, and attenuation of neuropathology. For the first time, therapeutic effect has been established in the canine model of GLD by targeting both peripheral and central nervous system impairments with potential clinical implications for GLD patients.


Assuntos
Galactosilceramidase/administração & dosagem , Terapia Genética , Leucodistrofia de Células Globoides/terapia , Doenças do Sistema Nervoso Periférico/terapia , Animais , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Dependovirus/genética , Modelos Animais de Doenças , Cães , Galactosilceramidase/genética , Vetores Genéticos/administração & dosagem , Humanos , Lactente , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia
11.
J Chem Phys ; 147(16): 161727, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096505

RESUMO

Accurate potential energy models are necessary for reliable atomistic simulations of chemical phenomena. In the realm of biomolecular modeling, large systems like proteins comprise very many noncovalent interactions (NCIs) that can contribute to the protein's stability and structure. This work presents two high-quality chemical databases of common fragment interactions in biomolecular systems as extracted from high-resolution Protein DataBank crystal structures: 3380 sidechain-sidechain interactions and 100 backbone-backbone interactions that inaugurate the BioFragment Database (BFDb). Absolute interaction energies are generated with a computationally tractable explicitly correlated coupled cluster with perturbative triples [CCSD(T)-F12] "silver standard" (0.05 kcal/mol average error) for NCI that demands only a fraction of the cost of the conventional "gold standard," CCSD(T) at the complete basis set limit. By sampling extensively from biological environments, BFDb spans the natural diversity of protein NCI motifs and orientations. In addition to supplying a thorough assessment for lower scaling force-field (2), semi-empirical (3), density functional (244), and wavefunction (45) methods (comprising >1M interaction energies), BFDb provides interactive tools for running and manipulating the resulting large datasets and offers a valuable resource for potential energy model development and validation.

12.
J Neurosci Res ; 94(11): 1138-51, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638599

RESUMO

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an autosomal recessive neurodegenerative disease caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). Hematopoietic stem cell transplantation (HSCT) provides modest benefit in presymptomatic patients but is well short of a cure. Gene transfer experiments using viral vectors have shown some success in extending the survival in the mouse model of GLD, twitcher mice. The present study compares three single-stranded (ss) AAV serotypes, two natural and one engineered (with oligodendrocyte tropism), and a self-complementary (sc) AAV vector, all packaged with a codon-optimized murine GALC gene. The vectors were delivered via a lumbar intrathecal route for global CNS distribution on PND10-11 at a dose of 2 × 10(11) vector genomes (vg) per mouse. The results showed a similar significant extension of life span of the twitcher mice for all three serotypes (AAV9, AAVrh10, and AAV-Olig001) as well as the scAAV9 vector, compared to control cohorts. The rAAV gene transfer facilitated GALC biodistribution and detectable enzymatic activity throughout the CNS as well as in sciatic nerve and liver. When combined with BMT from syngeneic wild-type mice, there was significant improvement in survival for ssAAV9. Histopathological analysis of brain, spinal cord, and sciatic nerve showed significant improvement in preservation of myelin, with ssAAV9 providing the greatest benefit. In summary, we demonstrate that lumbar intrathecal delivery of rAAV/mGALCopt can significantly enhance the life span of twitcher mice treated at PND10-11 and that BMT synergizes with this treatment to improve the survival further. © 2016 Wiley Periodicals, Inc.


Assuntos
Transplante de Medula Óssea/métodos , Galactosilceramidase/uso terapêutico , Terapia Genética/métodos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Animais , Animais Recém-Nascidos , Dependovirus/genética , Modelos Animais de Doenças , Galactosilceramidase/biossíntese , Galactosilceramidase/genética , Vetores Genéticos/fisiologia , Injeções Espinhais , Leucodistrofia de Células Globoides/mortalidade , Camundongos , Camundongos Mutantes , RNA Mensageiro , Análise de Sobrevida , Resultado do Tratamento
13.
J Chem Phys ; 140(12): 121104, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697416

RESUMO

Coupled-cluster theory including single, double, and perturbative triple excitations [CCSD(T)] has been applied to trimers that appear in crystalline benzene in order to resolve discrepancies in the literature about the magnitude of non-additive three-body contributions to the lattice energy. The present results indicate a non-additive three-body contribution of 0.89 kcal mol(-1), or 7.2% of the revised lattice energy of -12.3 kcal mol(-1). For the trimers for which we were able to compute CCSD(T) energies, we obtain a sizeable difference of 0.63 kcal mol(-1) between the CCSD(T) and MP2 three-body contributions to the lattice energy, confirming that three-body dispersion dominates over three-body induction. Taking this difference as an estimate of three-body dispersion for the closer trimers, and adding an Axilrod-Teller-Muto estimate of 0.13 kcal mol(-1) for long-range contributions yields an overall value of 0.76 kcal mol(-1) for three-body dispersion, a significantly smaller value than in several recent studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA