Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433651

RESUMO

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Assuntos
Neoplasias Encefálicas/genética , DNA Topoisomerases Tipo II/fisiologia , Epigênese Genética/fisiologia , Glioma/genética , Íntrons/fisiologia , Oncogenes/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Regiões Promotoras Genéticas/fisiologia , Animais , Neoplasias Encefálicas/enzimologia , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Humanos , Camundongos
2.
Proc Natl Acad Sci U S A ; 117(44): 27365-27373, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077595

RESUMO

Actively transcribed genes in mammals are decorated by H3K79 methylation, which is correlated with transcription levels and is catalyzed by the histone methyltransferase DOT1L. DOT1L is required for mammalian development, and the inhibition of its catalytic activity has been extensively studied for cancer therapy; however, the mechanisms underlying DOT1L's functions in normal development and cancer pathogenesis remain elusive. To dissect the relationship between H3K79 methylation, cellular differentiation, and transcription regulation, we systematically examined the role of DOT1L and its catalytic activity in embryonic stem cells (ESCs). DOT1L is dispensable for ESC self-renewal but is required for establishing the proper expression signature of neural progenitor cells, while catalytic inactivation of DOT1L has a lesser effect. Furthermore, DOT1L loss, rather than its catalytic inactivation, causes defects in glial cell specification. Although DOT1L loss by itself has no major defect in transcription elongation, transcription elongation defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead DOT1L cells, revealing a role of DOT1L in promoting productive transcription elongation that is independent of H3K79 methylation. Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional elongation control.


Assuntos
Diferenciação Celular/genética , Histona-Lisina N-Metiltransferase/metabolismo , Elongação da Transcrição Genética/fisiologia , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/genética , Epigenômica , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Células-Tronco Neurais/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Elongação da Transcrição/metabolismo
3.
Nat Genet ; 52(6): 615-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393859

RESUMO

The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Transativadores/genética
4.
Mol Cell ; 78(1): 112-126.e12, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32243828

RESUMO

Delineating how chromosomes fold at length scales beyond one megabase remains obscure relative to smaller-scale folding into TADs, loops, and nucleosomes. We find that rather than simply unfolding chromatin, histone hyperacetylation results in interactions between distant genomic loci separated by tens to hundreds of megabases, even in the absence of transcription. These hyperacetylated "megadomains" are formed by the BRD4-NUT fusion oncoprotein, interact both within and between chromosomes, and form a specific nuclear subcompartment that has elevated gene activity with respect to other subcompartments. Pharmacological degradation of BRD4-NUT results in collapse of megadomains and attenuation of the interactions between them. In contrast, these interactions persist and contacts between newly acetylated regions are formed after inhibiting RNA polymerase II initiation. Our structure-function approach thus reveals that broad chromatin domains of identical biochemical composition, independent of transcription, form nuclear subcompartments, and also indicates the potential of altering chromosome structure for treating human disease.


Assuntos
Núcleo Celular/genética , Cromatina/metabolismo , Cromossomos de Mamíferos/química , Acetilação , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Expressão Gênica , Humanos , Masculino , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo
5.
Clin Cancer Res ; 25(1): 222-239, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224337

RESUMO

PURPOSE: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN: To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples, and xenograft models. RESULTS: We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS: These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Leucemia de Células T/genética , Receptor Notch1/genética , Peptidase 7 Específica de Ubiquitina/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Terapia Genética , Humanos , Células Jurkat , Leucemia de Células T/patologia , Leucemia de Células T/terapia , Camundongos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Am J Respir Crit Care Med ; 199(12): 1517-1536, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554520

RESUMO

Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.


Assuntos
Células Cultivadas/patologia , Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Análise de Sequência de RNA , Células-Tronco/patologia , Transcriptoma , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino
7.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573454

RESUMO

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Assuntos
Endopeptidases/metabolismo , Leucemia/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Cromatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Leucemia/enzimologia , Leucemia/genética , Células MCF-7 , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estabilidade Proteica , Análise de Sobrevida
8.
Sci Adv ; 4(11): eaau6986, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30417100

RESUMO

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desmetilação , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Diferenciação Celular , Estudos de Coortes , Metilação de DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Epigênese Genética , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
9.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340042

RESUMO

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Drosophila , Feminino , Células HCT116 , Células HEK293 , Resposta ao Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Nat Med ; 24(6): 758-769, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785026

RESUMO

The lysine methyltransferase KMT2C (also known as MLL3), a subunit of the COMPASS complex, implements monomethylation of Lys4 on histone H3 (H3K4) at gene enhancers. KMT2C (hereafter referred to as MLL3) frequently incurs point mutations across a range of human tumor types, but precisely how these lesions alter MLL3 function and contribute to oncogenesis is unclear. Here we report a cancer mutational hotspot in MLL3 within the region encoding its plant homeodomain (PHD) repeats and demonstrate that this domain mediates association of MLL3 with the histone H2A deubiquitinase and tumor suppressor BAP1. Cancer-associated mutations in the sequence encoding the MLL3 PHD repeats disrupt the interaction between MLL3 and BAP1 and correlate with poor patient survival. Cancer cells that had PHD-associated MLL3 mutations or lacked BAP1 showed reduced recruitment of MLL3 and the H3K27 demethylase KDM6A (also known as UTX) to gene enhancers. As a result, inhibition of the H3K27 methyltransferase activity of the Polycomb repressive complex 2 (PRC2) in tumor cells harboring BAP1 or MLL3 mutations restored normal gene expression patterns and impaired cell proliferation in vivo. This study provides mechanistic insight into the oncogenic effects of PHD-associated mutations in MLL3 and suggests that restoration of a balanced state of Polycomb-COMPASS activity may have therapeutic efficacy in tumors that bear mutations in the genes encoding these epigenetic factors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Proteínas do Grupo Polycomb/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Camundongos Nus , Mutação/genética , Proteínas Nucleares/metabolismo , Dedos de Zinco PHD , Ligação Proteica , Análise de Sobrevida , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
11.
Sci Adv ; 4(1): eaap8747, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29404406

RESUMO

Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins ASsociated with Set1) protein family that implements histone H3 lysine 4 monomethylation (H3K4me1) at enhancers, is essential for embryonic development and functions as a pancancer tumor suppressor. We define the roles of Mll4/COMPASS and its catalytic activity in the maintenance and exit of ground-state pluripotency in murine embryonic stem cells (ESCs). Mll4 is required for ESC to exit the naive pluripotent state; however, its intrinsic catalytic activity is dispensable for this process. The depletion of the H3K4 demethylase Lsd1 (Kdm1a) restores the ability of Mll4 null ESCs to transition from naive to primed pluripotency. Thus, we define an opposing regulatory axis, wherein Lsd1 and associated co-repressors directly repress Mll4-activated gene targets. This finding has broad reaching implications for human developmental syndromes and the treatment of tumors carrying Mll4 mutations.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Epigênese Genética , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexos Multiproteicos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Histona-Lisina N-Metiltransferase/química , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Transcrição Gênica
12.
Genes Dev ; 31(20): 2056-2066, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138278

RESUMO

Mutations and translocations within the COMPASS (complex of proteins associated with Set1) family of histone lysine methyltransferases are associated with a large number of human diseases, including cancer. Here we report that SET1B/COMPASS, which is essential for cell survival, surprisingly has a cytoplasmic variant. SET1B, but not its SET domain, is critical for maintaining cell viability, indicating a novel catalytic-independent role of SET1B/COMPASS. Loss of SET1B or its unique cytoplasmic-interacting protein, BOD1, leads to up-regulation of expression of numerous genes modulating fatty acid metabolism, including ADIPOR1 (adiponectin receptor 1), COX7C, SDC4, and COQ7 Our detailed molecular studies identify ADIPOR1 signaling, which is inactivated in both obesity and human cancers, as a key target of SET1B/COMPASS. Collectively, our study reveals a cytoplasmic function for a member of the COMPASS family, which could be harnessed for therapeutic regulation of signaling in human diseases, including cancer.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Domínios PR-SET , Subunidades Proteicas/metabolismo , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Genes Dev ; 31(17): 1732-1737, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939616

RESUMO

Of the six members of the COMPASS (complex of proteins associated with Set1) family of histone H3 Lys4 (H3K4) methyltransferases identified in mammals, Set1A has been shown to be essential for early embryonic development and the maintenance of embryonic stem cell (ESC) self-renewal. Like its familial relatives, Set1A possesses a catalytic SET domain responsible for histone H3K4 methylation. Whether H3K4 methylation by Set1A/COMPASS is required for ESC maintenance and during differentiation has not yet been addressed. Here, we generated ESCs harboring the deletion of the SET domain of Set1A (Set1AΔSET); surprisingly, the Set1A SET domain is dispensable for ESC proliferation and self-renewal. The removal of the Set1A SET domain does not diminish bulk H3K4 methylation in ESCs; instead, only a subset of genomic loci exhibited reduction in H3K4me3 in Set1AΔSET cells, suggesting a role for Set1A independent of its catalytic domain in ESC self-renewal. However, Set1AΔSET ESCs are unable to undergo normal differentiation, indicating the importance of Set1A-dependent H3K4 methylation during differentiation. Our data also indicate that during differentiation, Set1A but not Mll2 functions as the H3K4 methylase on bivalent genes and is required for their expression, supporting a model for transcriptional switch between Mll2 and Set1A during the self-renewing-to-differentiation transition. Together, our study implicates a critical role for Set1A catalytic methyltransferase activity in regulating ESC differentiation but not self-renewal and suggests the existence of context-specific H3K4 methylation that regulates transcriptional outputs during ESC pluripotency.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Proliferação de Células/genética , Células-Tronco Embrionárias/enzimologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Domínios PR-SET/genética
14.
Science ; 357(6357): 1294-1298, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28860207

RESUMO

Gene expression in metazoans is regulated by RNA polymerase II (Pol II) promoter-proximal pausing and its release. Previously, we showed that Pol II-associated factor 1 (PAF1) modulates the release of paused Pol II into productive elongation. Here, we found that PAF1 occupies transcriptional enhancers and restrains hyperactivation of a subset of these enhancers. Enhancer activation as the result of PAF1 loss releases Pol II from paused promoters of nearby PAF1 target genes. Knockout of PAF1-regulated enhancers attenuates the release of paused Pol II on PAF1 target genes without major interference in the establishment of pausing at their cognate promoters. Thus, a subset of enhancers can primarily modulate gene expression by controlling the release of paused Pol II in a PAF1-dependent manner.


Assuntos
Elementos Facilitadores Genéticos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Nucleares/genética , Serpina E2/genética , Fatores de Transcrição , Regulação para Cima
15.
Genes Dev ; 31(8): 787-801, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28487406

RESUMO

The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Cromatina/genética , Células-Tronco Embrionárias/citologia , Deleção de Genes , Histona Metiltransferases , Camundongos , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ativação Transcricional/genética
16.
Nat Med ; 23(4): 493-500, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263307

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor characterized by rapid and uniform patient demise. A heterozygous point mutation of histone H3 occurs in more than 80% of these tumors and results in a lysine-to-methionine substitution (H3K27M). Expression of this histone mutant is accompanied by a reduction in the levels of polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation (H3K27me3), and this is hypothesized to be a driving event of DIPG oncogenesis. Despite a major loss of H3K27me3, PRC2 activity is still detected in DIPG cells positive for H3K27M. To investigate the functional roles of H3K27M and PRC2 in DIPG pathogenesis, we profiled the epigenome of H3K27M-mutant DIPG cells and found that H3K27M associates with increased H3K27 acetylation (H3K27ac). In accordance with previous biochemical data, the majority of the heterotypic H3K27M-K27ac nucleosomes colocalize with bromodomain proteins at the loci of actively transcribed genes, whereas PRC2 is excluded from these regions; this suggests that H3K27M does not sequester PRC2 on chromatin. Residual PRC2 activity is required to maintain DIPG proliferative potential, by repressing neuronal differentiation and function. Finally, to examine the therapeutic potential of blocking the recruitment of bromodomain proteins by heterotypic H3K27M-K27ac nucleosomes in DIPG cells, we performed treatments in vivo with BET bromodomain inhibitors and demonstrate that they efficiently inhibit tumor progression, thus identifying this class of compounds as potential therapeutics in DIPG.


Assuntos
Neoplasias do Tronco Encefálico/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Código das Histonas/genética , Histonas/genética , Nucleossomos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acetilação/efeitos dos fármacos , Animais , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromatina/efeitos dos fármacos , Epigenômica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Histonas/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular , Mutação , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Nucleossomos/efeitos dos fármacos , Complexo Repressor Polycomb 2/efeitos dos fármacos , Transporte Proteico , Proteínas de Ligação a RNA/antagonistas & inibidores , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065413

RESUMO

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Assuntos
Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/metabolismo , Proteólise/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Enzimas de Conjugação de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA