Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 649: 264-278, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348346

RESUMO

HYPOTHESIS: Colloidal gold nanoparticles (AuNPs) functionalised with hydrophilic thiols can be used as drug delivery probes, thanks to their small size and hydrophilic character. AuNPs possess unique properties for their use in nanomedicine, especially in cancer treatment, as diagnostics and therapeutic tools. EXPERIMENTS: Thiol functionalised AuNPs were synthesised and loaded with methotrexate (MTX). Spectroscopic and morphostructural characterisations evidenced the stability of the colloids upon interaction with MTX. Solid state (GISAXS, GIWAXS, FESEM, TEM, FTIR-ATR, XPS) and dispersed phase (UV-Vis, DLS, ζ-potential, NMR, SAXS) experiments allowed to understand structure-properties correlations. The nanoconjugate was tested in vitro (MTT assays) against two neuroblastoma cell lines: SNJKP and IMR5 with overexpressed n-Myc. FINDINGS: Molar drug encapsulation efficiency was optimised to be >70%. A non-covalent interaction between the π system and the carboxylate moiety belonging to MTX and the charged aminic group of one of the thiols was found. The MTX loading slightly decreased the structural order of the system and increased the distance between the AuNPs. Free AuNPs showed no cytotoxicity whereas the AuNPs-MTX nanoconjugate had a more potent effect when compared to free MTX. The active role of AuNPs was evidenced by permeation studies: an improvement on penetration of the drug inside cells was evidenced.


Assuntos
Nanopartículas Metálicas , Neuroblastoma , Humanos , Metotrexato/química , Ouro , Nanoconjugados , Compostos de Sulfidrila/química , Espalhamento a Baixo Ângulo , Nanopartículas Metálicas/química , Portadores de Fármacos/química , Difração de Raios X , Células MCF-7
2.
Biomolecules ; 13(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830615

RESUMO

Polyetheretherketone (PEEK) is a thermoplastic polymer that has been recently employed for bone tissue engineering as a result of its biocompatibility and mechanical properties being comparable to human bone. PEEK, however, is a bio-inert material and, when implanted, does not interact with the host tissues, resulting in poor integration. In this work, the surfaces of 3D-printed PEEK disks were functionalized with: (i) an adhesive peptide reproducing [351-359] h-Vitronectin sequence (HVP) and (ii) HVP retro-inverted dimer (D2HVP), that combines the bioactivity of the native sequence (HVP) with the stability toward proteolytic degradation. Both sequences were designed to be anchored to the polymer surface through specific covalent bonds via oxime chemistry. All functionalized PEEK samples were characterized by Water Contact Angle (WCA) measurements, Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS) to confirm the peptide enrichment. The biological results showed that both peptides were able to increase cell proliferation at 3 and 21 days. D2HVP functionalized PEEK resulted in an enhanced proliferation across all time points investigated with higher calcium deposition and more elongated cell morphology.


Assuntos
Polímeros , Vitronectina , Humanos , Polietilenoglicóis/química , Cetonas/química , Peptídeos , Propriedades de Superfície
3.
Colloids Surf B Biointerfaces ; 219: 112828, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108370

RESUMO

Gold nanoparticles (AuNPs) modified with four organoselenium compounds, i.e., 4-selenocyanatoaniline (compound 1), 4,4'-diselanediyldianiline (compound 2), N-(4-selenocyanatophenyl)cinnamamide (compound 3), and N-(3-selenocyanatopropyl)cinnamamide (compound 4), were synthesized following two different approaches: direct conjugation and non-covalent immobilization onto hydrophilic and non-cytotoxic AuNPs functionalized with 3-mercapto-1-propanesulfonate (3MPS). Both free compounds and AuNPs-based systems were characterized via UV-Vis, FTIR NMR, mass spectrometry, and SR-XPS to assess their optical and structural properties. Size and colloidal stability were evaluated by DLS and ζ-potential measurements, whereas morphology at solid-state was evaluated by atomic force (AFM) and scanning electron (FESEM) microscopies. AuNPs synthesized through chemical reduction method in presence of Se-based compounds as functionalizing agents allowed the formation of aggregated NPs with little to no solubility in aqueous media. To improve their hydrophilicity and stability mixed AuNPs-3MPS-1 were synthesized. Besides, Se-loaded AuNPs-3MPS revealed to be the most suitable systems for biological studies in terms of size and colloidal stability. Selenium derivatives and AuNPs were tested in vitro via MTT assay against PC-3 (prostatic adenocarcinoma) and HCT-116 (colorectal carcinoma) cell lines. Compared to free compounds, direct functionalization onto AuNPs with formation of Au-Se covalent bond led to non-cytotoxic systems in the concentration range explored (0-100 µg/mL), whereas immobilization on AuNPs-3MPS improved the cytotoxicity of compounds 1, 3, and 4. Selective anticancer response against HCT-116 cells was obtained by AuNPs-3MPS-1. These results demonstrated that AuNPs can be used as a platform to tune the in vitro biological activity of organoselenium compounds.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Cinamatos , Neoplasias/tratamento farmacológico
4.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684982

RESUMO

In the field of research for designing and preparing innovative nanostructured systems, these systems are able to reveal the presence of heavy metals in water samples, and can efficiently and selectively interact with them, allowing for future applications in the field of water remediation. We investigated the electronic and molecular structure, as well as the morphology, of silver nanoparticles stabilized by mixed biocompatible ligands (the amino acid L-cysteine and the organic molecule citrate) in the presence of cadmium and arsenic ions. The molecular, electronic, and local structure at the ligands/silver nanoparticles interface was probed by the complementary synchrotron radiation-induced techniques (SR-XPS, NEXAFS and XAS). The optical absorption (in the UV-Vis range) of the nanosystem was investigated in the presence of Cd(II) and As(III) and the observed behavior suggested a selective interaction with cadmium. In addition, the toxicological profile of the innovative nanosystem was assessed in vitro using a human epithelial cell line HEK293T. We analyzed the viability of the cells treated with silver nanoparticles, as well as the activation of antioxidant response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA