Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 35(10): e14643, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448106

RESUMO

BACKGROUND: Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare mitochondrial disease caused by mutations in TYMP, encoding thymidine phosphorylase. Clinically it is characterized by severe gastrointestinal dysmotility associated with cachexia and a demyelinating sensorimotor polyneuropathy. Even though digestive manifestations are progressive and invariably lead to death, the features of gastrointestinal motor dysfunction have not been systematically evaluated. The objective of this study was to describe gastrointestinal motor dysfunction in MNGIE using state-of-the art techniques and to evaluate the relationship between motor abnormalities and symptoms. METHODS: Prospective study evaluating gastrointestinal motor function and digestive symptoms in all patients with MNGIE attended at a national referral center in Spain between January 2018 and July 2022. KEY RESULTS: In this period, five patients diagnosed of MNGIE (age range 16-46 years, four men) were evaluated. Esophageal motility by high-resolution manometry was abnormal in four patients (two hypoperistalsis, two aperistalsis). Gastric emptying by scintigraphy was mildly delayed in four and indicative of gastroparesis in one. In all patients, small bowel high-resolution manometry exhibited a common, distinctive dysmotility pattern, characterized by repetitive bursts of spasmodic contractions, without traces of normal fasting and postprandial motility patterns. Interestingly, objective motor dysfunctions were detected in the absence of severe digestive symptoms. CONCLUSIONS AND INFERENCES: MNGIE patients exhibit a characteristic motor dysfunction, particularly of the small bowel, even in patients with mild digestive symptoms and in the absence of morphological signs of intestinal failure. Since symptoms are not predictive of objective findings, early investigation is indicated.


Assuntos
Gastroenteropatias , Pseudo-Obstrução Intestinal , Encefalomiopatias Mitocondriais , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Pseudo-Obstrução Intestinal/genética , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Mutação , Gastroenteropatias/genética
2.
J Hum Genet ; 68(8): 527-532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36959467

RESUMO

RRM2B encodes the p53-inducible small subunit (p53R2) of ribonucleotide reductase, a key protein for mitochondrial DNA (mtDNA) synthesis. Pathogenic variants in this gene result in familial mitochondrial disease in adults and children, secondary to a maintenance disorder of mtDNA. This study describes two patients, mother and son, with early-onset chronic progressive external ophthalmoplegia (PEO). Skeletal muscle biopsy from the latter was examined: cytochrome c oxidase (COX)-negative fibres were shown, and molecular studies revealed multiple mtDNA deletions. A next-generation sequencing gene panel for nuclear-encoded mitochondrial maintenance genes identified two unreported heterozygous missense variants (c.514 G > A and c.682 G > A) in the clinically affected son. The clinically affected mother harboured the first variant in homozygous state, and the clinically unaffected father harboured the remaining variant in heterozygous state. In silico analyses predicted both variants as deleterious. Cell culture studies revealed that patients' skin fibroblasts, but not fibroblasts from healthy controls, responded to nucleoside supplementation with enhanced mtDNA repopulation, thus suggesting an in vitro functional difference in patients' cells. Our results support the pathogenicity of two novel RRM2B variants found in two patients with autosomal recessive PEO with multiple mtDNA deletions inherited with a pseudodominant pattern.


Assuntos
Oftalmoplegia Externa Progressiva Crônica , Oftalmoplegia , Ribonucleotídeo Redutases , Adulto , Criança , Humanos , Oftalmoplegia Externa Progressiva Crônica/genética , Oftalmoplegia Externa Progressiva Crônica/patologia , Padrões de Herança , DNA Mitocondrial/genética , Ribonucleotídeo Redutases/genética , Proteínas de Ciclo Celular/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232299

RESUMO

Thymidine kinase (TK2) deficiency causes mitochondrial DNA depletion syndrome. We aimed to report the clinical, biochemical, genetic, histopathological, and ultrastructural features of a cohort of paediatric patients with TK2 deficiency. Mitochondrial DNA was isolated from muscle biopsies to assess depletions and deletions. The TK2 genes were sequenced using Sanger sequencing from genomic DNA. All muscle biopsies presented ragged red fibres (RRFs), and the prevalence was greater in younger ages, along with an increase in succinate dehydrogenase (SDH) activity and cytochrome c oxidase (COX)-negative fibres. An endomysial inflammatory infiltrate was observed in younger patients and was accompanied by an overexpression of major histocompatibility complex type I (MHC I). The immunofluorescence study for complex I and IV showed a greater number of fibres than those that were visualized by COX staining. In the ultrastructural analysis, we found three major types of mitochondrial alterations, consisting of concentrically arranged lamellar cristae, electrodense granules, and intramitochondrial vacuoles. The pathological features in the muscle showed substantial differences in the youngest patients when compared with those that had a later onset of the disease. Additional ultrastructural features are described in the muscle biopsy, such as sarcomeric de-structuration in the youngest patients with a more severe phenotype.


Assuntos
Miopatias Mitocondriais , Timidina Quinase/metabolismo , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Succinato Desidrogenase , Timidina Quinase/genética
4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208592

RESUMO

Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.


Assuntos
DNA Mitocondrial , Mitocôndrias/genética , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/terapia , Animais , Terapia Combinada , Replicação do DNA , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
5.
EBioMedicine ; 62: 103133, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33232869

RESUMO

BACKGROUND: Preclinical studies have shown that gene therapy is a feasible approach to treat mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the genetic murine model of the disease (Tymp/Upp1 double knockout, dKO) has a limited functional phenotype beyond the metabolic imbalances, and so the studies showing efficacy of gene therapy have relied almost exclusively on demonstrating correction of the biochemical phenotype. Chronic oral administration of thymidine (dThd) and deoxyuridine (dUrd) to dKO mice deteriorates the phenotype of the animals, providing a better model to test therapy approaches. METHODS: dKO mice were treated with both dThd and dUrd in drinking water from weaning until the end of the study. At 8 - 11 weeks of age, mice were treated with several doses of adeno-associated virus (AAV) serotype 8 vector carrying the human TYMP coding sequence under the control of different liver-specific promoters (TBG, AAT, or HLP). The biochemical profile and functional phenotype were studied over the life of the animals. FINDINGS: Nucleoside exposure resulted in 30-fold higher plasma nucleoside levels in dKO mice compared with non-exposed wild type mice. AAV-treatment provided elevated TP activity in liver and lowered systemic nucleoside levels in exposed dKO mice. Exposed dKO mice had enlarged brain ventricles (assessed by magnetic resonance imaging) and motor impairment (rotarod test); both were prevented by AAV treatment. Among all promoters tested, AAT showed the best efficacy. INTERPRETATION: Our results show that AAV-mediated gene therapy restores the biochemical homeostasis in the murine model of MNGIE and, for the first time, demonstrate that this treatment improves the functional phenotype. FUNDING: This work was funded in part by the Spanish Instituto de Salud Carlos III, and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/terapia , Nucleosídeos/farmacologia , Oftalmoplegia/congênito , Animais , Terapia Combinada , Modelos Animais de Doenças , Ativação Enzimática , Dosagem de Genes , Expressão Gênica , Terapia Genética/métodos , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Oftalmoplegia/genética , Oftalmoplegia/terapia , Fenótipo , Timidina Fosforilase/genética , Resultado do Tratamento
6.
Hum Gene Ther ; 30(8): 985-998, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30900470

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating disease caused by mutations in TYMP, which encodes thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction results in systemic thymidine and deoxyuridine overload, which interferes with mitochondrial DNA replication. Preclinical studies have shown that gene therapy using a lentiviral vector targeted to hematopoietic stem cells or an adeno-associated virus (AAV) vector transcriptionally targeted to liver are feasible approaches to treat MNGIE. Here, we studied the effect of various promoters (thyroxine-binding globulin [TBG], phosphoglycerate kinase [PGK], hybrid liver-specific promoter [HLP], and alpha-1-antitrypsin [AAT]) and DNA configuration (single stranded or self complementary) on expression of the TYMP transgene in the AAV8 serotype in a murine model of MNGIE. All vectors restored liver TP activity and normalized nucleoside homeostasis in mice. However, the liver-specific promoters TBG, HLP, and AAT were more effective than the constitutive PGK promoter, and the self-complementary DNA configuration did not provide any therapeutic advantage over the single-stranded configuration. Among all constructs, only AAV-AAT was effective in all mice treated at the lowest dose (5 × 1010 vector genomes/kg). As use of the AAT promoter will likely minimize the dose needed to achieve clinical efficacy as compared to the other promoters tested, we propose using the AAT promoter in the vector eventually designed for clinical use.


Assuntos
Dependovirus/genética , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/terapia , Regiões Promotoras Genéticas , alfa 1-Antitripsina/genética , Animais , Modelos Animais de Doenças , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Homeostase , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Encefalomiopatias Mitocondriais/metabolismo , Timidina Fosforilase/genética , Transdução Genética , alfa 1-Antitripsina/metabolismo
7.
Mol Ther Methods Clin Dev ; 8: 152-165, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687034

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp-/-Upp1-/- mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2-3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp-/-Upp1-/- mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.

8.
Hum Gene Ther ; 29(6): 708-718, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29284302

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in TYMP, the gene encoding the enzyme thymidine phosphorylase (TP). TP dysfunction results in systemic accumulation of the noxious TP substrates thymidine and deoxyuridine. Gene therapy using either a lentiviral vector or adeno-associated vector (AAV) has proven to be a feasible strategy, as both vectors restore biochemical homeostasis in a murine model of the disease. This study shows that the effect of an AAV containing the TYMP coding sequence transcriptionally targeted to the liver persists long term in mice. Although the vector copy number was diluted and AAV-mediated liver TP activity eventually reduced or lost after 21 months at the lowest vector doses, the effect was sustained (with a negligible decrease in TP activity) and fully effective on nucleoside homeostasis for at least 21 months at a dose of 2 × 1012 vg/kg. Macroscopic visual inspection of the animals' organs at completion of the study showed no adverse effects associated with the treatment. These results further support the feasibility of gene therapy for MNGIE.


Assuntos
Dependovirus/genética , Terapia Genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Fígado/patologia , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/terapia , Animais , Carcinogênese/patologia , Desoxiuridina/sangue , Feminino , Dosagem de Genes , Vetores Genéticos/metabolismo , Pseudo-Obstrução Intestinal/sangue , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias Hepáticas/metabolismo , Distrofia Muscular Oculofaríngea/sangue , Oftalmoplegia/congênito , Timidina/sangue , Timidina Fosforilase/genética , Fatores de Tempo , Transgenes
9.
DNA Repair (Amst) ; 57: 171-178, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28822913

RESUMO

Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention.


Assuntos
Sobrevivência Celular , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Polifosfatos/metabolismo , Desoxirribonucleotídeos/metabolismo , Células HEK293 , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
10.
PLoS Pathog ; 12(8): e1005829, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27541004

RESUMO

Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages.


Assuntos
Ciclina D2/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Macrófagos/imunologia , Animais , Proliferação de Células , Quinase 4 Dependente de Ciclina/imunologia , Inibidor de Quinase Dependente de Ciclina p21/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Macrófagos/virologia , Camundongos , Proteínas Monoméricas de Ligação ao GTP/imunologia , Proteína 1 com Domínio SAM e Domínio HD
11.
Mol Microbiol ; 101(3): 367-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27072996

RESUMO

Polyphosphate (polyP) is a linear chain of up to hundreds of inorganic phosphate residues that is necessary for many physiological functions in all living organisms. In some bacteria, polyP supplies material to molecules such as DNA, thus playing an important role in biosynthetic processes in prokaryotes. In the present study, we set out to gain further insight into the role of polyP in eukaryotic cells. We observed that polyP amounts are cyclically regulated in Saccharomyces cerevisiae, and those mutants that cannot synthesise (vtc4Δ) or hydrolyse polyP (ppn1Δ, ppx1Δ) present impaired cell cycle progression. Further analysis revealed that polyP mutants show delayed nucleotide production and increased genomic instability. Based on these findings, we concluded that polyP not only maintains intracellular phosphate concentrations in response to fluctuations in extracellular phosphate levels, but also muffles internal cyclic phosphate fluctuations, such as those produced by the sudden demand of phosphate to synthetize deoxynucleotides just before and during DNA duplication. We propose that the presence of polyP in eukaryotic cells is required for the timely and accurate duplication of DNA.


Assuntos
Instabilidade Genômica , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Organelas/metabolismo , Células Procarióticas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
12.
Hum Gene Ther ; 27(9): 656-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27004974

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a metabolic disorder caused by mutations in TYMP, encoding thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction produces systemic thymidine and deoxyuridine accumulation, which ultimately impairs mitochondrial DNA replication and results in mitochondrial dysfunction. To date, only allogeneic hematopoietic stem cell transplantation has demonstrated long-term clinical efficacy, but high morbidity and mortality associated with this procedure necessitate the search for safer alternatives. In a previous study, we demonstrated that hematopoietic stem cell gene therapy using a lentiviral vector containing the coding sequence of TYMP restored the biochemical homeostasis in an animal model of MNGIE. In the present follow-up study, we show that ectopic expression of TP in the hematopoietic system restores normal nucleoside levels in plasma, as well as in tissues affected in MNGIE such as small intestine, skeletal muscle, brain, and liver. Mitochondrial dNTP pool imbalances observed in liver of the animal model were also corrected by the treatment. The biochemical effects were maintained at least 20 months even with low levels of chimerism. No alterations in the blood cell counts or other toxic effects were observed in association with the lentiviral transduction or TP overexpression. These results further support the notion that gene therapy is a feasible treatment option for MNGIE.


Assuntos
Terapia Genética , Vetores Genéticos/administração & dosagem , Transplante de Células-Tronco Hematopoéticas , Pseudo-Obstrução Intestinal/terapia , Lentivirus/genética , Encefalomiopatias Mitocondriais/terapia , Nucleosídeos/metabolismo , Timidina Fosforilase/genética , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Homeostase , Pseudo-Obstrução Intestinal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Encefalomiopatias Mitocondriais/genética , Distrofia Muscular Oculofaríngea , Oftalmoplegia/congênito
13.
J Antimicrob Chemother ; 71(2): 387-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26542306

RESUMO

OBJECTIVES: Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). METHODS: MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS: CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. CONCLUSIONS: SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib.


Assuntos
Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Herpesvirus Humano 1/fisiologia , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Proteína 1 com Domínio SAM e Domínio HD
14.
Brain ; 138(Pt 10): 2847-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264513

RESUMO

Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known patients suffering from mitochondrial neurogastrointestinal encephalomyopathy who underwent allogeneic haematopoietic stem cell transplantation between 2005 and 2011. Twenty-four patients, 11 males and 13 females, median age 25 years (range 10-41 years) treated with haematopoietic stem cell transplantation from related (n = 9) or unrelated donors (n = 15) in 15 institutions worldwide were analysed for outcome and its associated factors. Overall, 9 of 24 patients (37.5%) were alive at last follow-up with a median follow-up of these surviving patients of 1430 days. Deaths were attributed to transplant in nine (including two after a second transplant due to graft failure), and to mitochondrial neurogastrointestinal encephalomyopathy in six patients. Thymidine phosphorylase activity rose from undetectable to normal levels (median 697 nmol/h/mg protein, range 262-1285) in all survivors. Seven patients (29%) who were engrafted and living more than 2 years after transplantation, showed improvement of body mass index, gastrointestinal manifestations, and peripheral neuropathy. Univariate statistical analysis demonstrated that survival was associated with two defined pre-transplant characteristics: human leukocyte antigen match (10/10 versus <10/10) and disease characteristics (liver disease, history of gastrointestinal pseudo-obstruction or both). Allogeneic haematopoietic stem cell transplantation can restore thymidine phosphorylase enzyme function in patients with mitochondrial neurogastrointestinal encephalomyopathy and improve clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy in the long term. Allogeneic haematopoietic stem cell transplantation should be considered for selected patients with an optimal donor.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Pseudo-Obstrução Intestinal/cirurgia , Encefalomiopatias Mitocondriais/cirurgia , Resultado do Tratamento , Adolescente , Adulto , Peso Corporal , Encéfalo/patologia , Criança , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Distrofia Muscular Oculofaríngea , Condução Nervosa/fisiologia , Exame Neurológico , Neutrófilos , Oftalmoplegia/congênito , Estudos Retrospectivos , Análise de Sobrevida , Timidina Fosforilase/metabolismo , Transplante Homólogo/métodos , Adulto Jovem
15.
Cell Cycle ; 14(11): 1657-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927932

RESUMO

Cyclins control the activation of cyclin-dependent kinases (CDK), which in turn, control the cell cycle and cell division. Intracellular availability of deoxynucleotides (dNTP) plays a fundamental role in cell cycle progression. SAM domain and HD domain-containing protein 1 (SAMHD1) degrades nucleotide triphosphates and controls the size of the dNTP pool. SAMHD1 activity appears to be controlled by CDK. Here, we show that knockdown of cyclin D3 a partner of CDK6 and E2 a partner of CDK2 had a major impact in SAMHD1 phosphorylation and inactivation and led to decreased dNTP levels and inhibition of HIV-1 at the reverse transcription step in primary human macrophages. The effect of cyclin D3 RNA interference was lost after degradation of SAMHD1 by HIV-2 Vpx, demonstrating the specificity of the mechanism. Cyclin D3 inhibition correlated with decreased activation of CDK2. Our results confirm the fundamental role of the CDK6-cyclin D3 pair in controlling CDK2-dependent SAMHD1 phosphorylation and dNTP pool in primary macrophages.


Assuntos
Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Desoxirribonucleotídeos/metabolismo , HIV-1/fisiologia , Macrófagos/fisiologia , Modelos Biológicos , Replicação Viral/fisiologia , Ciclina D3/genética , Técnicas de Silenciamento de Genes , Humanos , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Interferência de RNA , Proteína 1 com Domínio SAM e Domínio HD
16.
J Immunol ; 193(4): 1988-97, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015816

RESUMO

Proliferating cells are preferentially susceptible to infection by retroviruses. Sterile α motif and HD domain-containing protein-1 (SAMHD1) is a recently described deoxynucleotide phosphohydrolase controlling the size of the intracellular deoxynucleotide triphosphate (dNTP) pool, a limiting factor for retroviral reverse transcription in noncycling cells. Proliferating (Ki67(+)) primary CD4(+) T cells or macrophages express a phosphorylated form of SAMHD1 that corresponds with susceptibility to infection in cell culture. We identified cyclin-dependent kinase (CDK) 6 as an upstream regulator of CDK2 controlling SAMHD1 phosphorylation in primary T cells and macrophages susceptible to infection by HIV-1. In turn, CDK2 was strongly linked to cell cycle progression and coordinated SAMHD1 phosphorylation and inactivation. CDK inhibitors specifically blocked HIV-1 infection at the reverse transcription step in a SAMHD1-dependent manner, reducing the intracellular dNTP pool. Our findings identify a direct relationship between control of the cell cycle by CDK6 and SAMHD1 activity, which is important for replication of lentiviruses, as well as other viruses whose replication may be regulated by intracellular dNTP availability.


Assuntos
Pontos de Checagem do Ciclo Celular/imunologia , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Infecções por HIV/imunologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Benzilaminas , Linfócitos T CD4-Positivos/imunologia , Ciclo Celular/imunologia , Células Cultivadas , Ciclamos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Células HEK293 , Infecções por HIV/virologia , HIV-1/imunologia , Compostos Heterocíclicos/farmacologia , Humanos , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Células Mieloides/imunologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores CXCR4/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD
17.
Am J Physiol Gastrointest Liver Physiol ; 307(7): G673-88, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24970780

RESUMO

Solute carrier (SLC) transporters mediate the uptake of biologically active compounds in the intestine. Reduced oxygenation (hypoxia) is an important factor influencing intestinal homeostasis. The aim of this study was to investigate the pathophysiological consequences of hypoxia on the expression and function of SLCs in human intestine. Hypoxia was induced in human intestinal epithelial cells (IECs) in vitro (0.2; 1% O2 or CoCl2). For human in vivo studies, duodenal biopsies and serum samples were obtained from individuals (n = 16) acutely exposed to 4,554 meters above sea levels. Expression of relevant targets was analyzed by quantitative PCR, Western blotting, or immunofluorescence. Serum levels of inflammatory mediators and nucleosides were determined by ELISA and LC/MS-MS, respectively. In the duodenum of volunteers exposed to high altitude we observed decreased mRNA levels of apical sodium-dependent bile acid transporter (ASBT), concentrative nucleoside transporters 1/2 (CNT1/2), organic anion transporting polypeptide 2B1 (OATP2B1), organic cation transporter 2 (OCTN2), peptide transporter 1 (PEPT1), serotonin transporter (SERT), and higher levels of IFN-γ, IL-6, and IL-17A. Serum levels of IL-10, IFN-γ, matrix metalloproteinase-2 (MMP-2), and serotonin were elevated, whereas the levels of uridine decreased upon exposure to hypoxia. Hypoxic IECs showed reduced levels of equilibrative nucleoside transporter 2 (ENT2), OCTN2, and SERT mRNAs in vitro, which was confirmed on the protein level and was accompanied by activation of ERK1/2, increase of hypoxia-inducible factor (HIF) proteins, and production of IL-8 mRNA. Costimulation with IFN-γ and IL-6 during hypoxia further decreased the expression of SERT, ENT2, and CNT2 in vitro. Reduced oxygen supply affects the expression pattern of duodenal SLCs that is accompanied by changes in serum levels of proinflammatory cytokines and biologically active compounds demonstrating that intestinal transport is affected during systemic exposure to hypoxia in humans.


Assuntos
Aclimatação , Altitude , Citocinas/sangue , Duodeno/metabolismo , Hipóxia/metabolismo , Mediadores da Inflamação/sangue , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais , Biomarcadores/sangue , Hipóxia Celular , Linhagem Celular , Citocinas/genética , Regulação para Baixo , Duodeno/fisiopatologia , Humanos , Hipóxia/sangue , Hipóxia/genética , Hipóxia/fisiopatologia , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Proteínas de Membrana Transportadoras/genética , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Regulação para Cima
18.
Antimicrob Agents Chemother ; 58(8): 4804-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913159

RESUMO

Sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase recently recognized as an antiviral factor that acts by depleting dNTP availability for viral reverse transcriptase (RT). SAMHD1 restriction is counteracted by the human immunodeficiency virus type 2 (HIV-2) accessory protein Vpx, which targets SAMHD1 for proteosomal degradation, resulting in an increased availability of dNTPs and consequently enhanced viral replication. Nucleoside reverse transcriptase inhibitors (NRTI), one of the most common agents used in antiretroviral therapy, compete with intracellular dNTPs as the substrate for viral RT. Consequently, SAMHD1 activity may be influencing NRTI efficacy in inhibiting viral replication. Here, a panel of different RT inhibitors was analyzed for their different antiviral efficacy depending on SAMHD1. Antiviral potency was measured for all the inhibitors in transformed cell lines and primary monocyte-derived macrophages and CD4(+) T cells infected with HIV-1 with or without Vpx. No changes in sensitivity to non-NRTI or the integrase inhibitor raltegravir were observed, but for NRTI, sensitivity significantly changed only in the case of the thymidine analogs (AZT and d4T). The addition of exogenous thymidine mimicked the change in viral sensitivity observed after Vpx-mediated SAMHD1 degradation, pointing toward a differential effect of SAMHD1 activity on thymidine. Accordingly, sensitivity to AZT was also reduced in CD4(+) T cells infected with HIV-2 compared to infection with the HIV-2ΔVpx strain. In conclusion, reduction of SAMHD1 levels significantly decreases HIV sensitivity to thymidine but not other nucleotide RT analog inhibitors in both macrophages and lymphocytes.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-2/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Estavudina/farmacologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Zidovudina/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Expressão Gênica , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-2/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/genética , Cultura Primária de Células , Proteína 1 com Domínio SAM e Domínio HD , Timidina/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral/efeitos dos fármacos
19.
Mol Ther ; 22(5): 901-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24448160

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in TYMP, enconding thymidine phosphorylase (TP). TP deficiency results in systemic accumulation of thymidine and deoxyuridine, which interferes with mitochondrial DNA (mtDNA) replication and leads to mitochondrial dysfunction. To date, the only treatment available for MNGIE patients is allogeneic hematopoietic stem cell transplantation, which is associated with high morbidity and mortality. Here, we report that AAV2/8-mediated transfer of the human TYMP coding sequence (hcTYMP) under the control of a liver-specific promoter prevents the biochemical imbalances in a murine model of MNGIE. hcTYMP expression was restricted to liver, and a dose as low as 2 × 10(11) genome copies/kg led to a permanent reduction in systemic nucleoside levels to normal values in about 50% of treated mice. Higher doses resulted in reductions to normal or slightly below normal levels in virtually all mice treated. The nucleoside reduction achieved by this treatment prevented deoxycytidine triphosphate (dCTP) depletion, which is the limiting factor affecting mtDNA replication in this disease. These results demonstrate that the use of AAV to direct TYMP expression in liver is feasible as a potentially safe gene therapy strategy for MNGIE.


Assuntos
Terapia Genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/terapia , Timidina Fosforilase/genética , Animais , DNA Mitocondrial/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Homeostase/genética , Humanos , Pseudo-Obstrução Intestinal/patologia , Fígado/metabolismo , Camundongos , Encefalomiopatias Mitocondriais/patologia , Distrofia Muscular Oculofaríngea , Mutação , Oftalmoplegia/congênito , Timidina/metabolismo , Timidina Fosforilase/biossíntese
20.
Hum Mol Genet ; 23(9): 2459-67, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24362886

RESUMO

Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and consequent mitochondrial dysfunction in affected tissues. A subgroup of MDS is caused by mutations in genes that disrupt deoxyribonucleotide metabolism, which ultimately leads to limited availability of one or several deoxyribonucleoside triphosphates (dNTPs), and subsequent mtDNA depletion. Here, using in vitro experimental approaches (primary cell culture of deoxyguanosine kinase-deficient cells and thymidine-induced mtDNA depletion in culture as a model of mitochondrial neurogastrointestinal encephalomyopathy, MNGIE), we show that supplements of those deoxyribonucleosides (dNs) involved in each biochemical defect (deoxyguanosine or deoxycytidine, dCtd) prevents mtDNA copy number reduction. Similar effects can be obtained by specific inhibition of dN catabolism using tetrahydrouridine (THU; inhibitor of cytidine deaminase) or immucillin H (inhibitor of purine nucleoside phosphorylase). In addition, using an MNGIE animal model, we provide evidence that mitochondrial dNTP content can be modulated in vivo by systemic administration of dCtd or THU. In spite of the severity associated with diseases due to defects in mtDNA replication, there are currently no effective therapeutic options available. Only in the case of MNGIE, allogeneic hematopoietic stem cell transplantation has proven efficient as a long-term therapeutic strategy. We propose increasing cellular availability of the deficient dNTP precursor by direct administration of the dN or inhibition of its catabolism, as a potential treatment for mtDNA depletion syndrome caused by defects in dNTP metabolism.


Assuntos
DNA Mitocondrial/genética , Desoxirribonucleosídeos/uso terapêutico , Pseudo-Obstrução Intestinal/tratamento farmacológico , Pseudo-Obstrução Intestinal/metabolismo , Encefalomiopatias Mitocondriais/tratamento farmacológico , Encefalomiopatias Mitocondriais/metabolismo , Animais , Células Cultivadas , Variações do Número de Cópias de DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/metabolismo , Humanos , Pseudo-Obstrução Intestinal/genética , Masculino , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/genética , Distrofia Muscular Oculofaríngea , Oftalmoplegia/congênito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA