Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001798

RESUMO

We have previously demonstrated that the post-stroke administration of iron-free transferrin (apotransferrin, ATf) is beneficial in different models of ischemic stroke (IS) through the inhibition of the neuronal uptake of pro-oxidant iron. In the present study, we asked whether ATf is safe and also beneficial when given after the induction of intracerebral hemorrhage (ICH) in mice, and investigated the underlying mechanisms. We first compared the main iron actors in the brain of IS- or collagenase-induced ICH mice and then obtained insight into these iron-related proteins in ICH 72 h after the administration of ATf. The infarct size of the IS mice was double that of hemorrhage in ICH mice, but both groups showed similar body weight loss, edema, and increased ferritin and transferrin levels in the ipsilateral brain hemisphere. Although the administration of human ATf (hATf) to ICH mice did not alter the hemorrhage volume or levels of the classical ferroptosis GPX4/system xc- pathways, hATf induced better neurobehavioral performance, decreased 4-hydroxynonenal levels and those of the second-generation ferroptosis marker transferrin receptor (TfR), and restored the mRNA levels of the recently recognized cytosolic iron chaperone poly(RC) binding protein 2. In addition, hATf treatment lowered the ICH-induced increase in both endogenous mouse transferrin mRNA levels and the activation of caspase-2. In conclusion, hATf treatment provides neurobehavioral benefits post-ICH associated with the modulation of iron/oxidative players.

2.
Antioxidants (Basel) ; 10(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439518

RESUMO

A role of iron as a target to prevent stroke-induced neurodegeneration has been recently revisited due to new evidence showing that ferroptosis inhibitors are protective in experimental ischemic stroke and might be therapeutic in other neurodegenerative brain pathologies. Ferroptosis is a new form of programmed cell death attributed to an overwhelming lipidic peroxidation due to excessive free iron and reactive oxygen species (ROS). This study aims to evaluate the safety and tolerability and to explore the therapeutic efficacy of the iron chelator and antioxidant deferoxamine mesylate (DFO) in ischemic stroke patients. Administration of placebo or a single DFO bolus followed by a 72 h continuous infusion of three escalating doses was initiated during the tPA infusion, and the impact on blood transferrin iron was determined. Primary endpoint was safety and tolerability, and secondary endpoint was good clinical outcome (clinicalTrials.gov NCT00777140). DFO was found safe as adverse effects were not different between placebo and DFO arms. DFO (40-60 mg/Kg/day) reduced the iron saturation of blood transferrin. A trend to efficacy was observed in patients with moderate-severe ischemic stroke (NIHSS > 7) treated with DFO 40-60 mg/Kg/day. A good outcome was observed at day 90 in 31% of placebo vs. 50-58% of the 40-60 mg/Kg/day DFO-treated patients.

3.
Front Neurosci ; 13: 85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837827

RESUMO

In general, iron represents a double-edged sword in metabolism in most tissues, especially in the brain. Although the high metabolic demands of brain cells require iron as a redox-active metal for ATP-producing enzymes, the brain is highly vulnerable to the devastating consequences of excessive iron-induced oxidative stress and, as recently found, to ferroptosis as well. The blood-brain barrier (BBB) protects the brain from fluctuations in systemic iron. Under pathological conditions, especially in acute brain pathologies such as stroke, the BBB is disrupted, and iron pools from the blood gain sudden access to the brain parenchyma, which is crucial in mediating stroke-induced neurodegeneration. Each brain cell type reacts with changes in their expression of proteins involved in iron uptake, efflux, storage, and mobilization to preserve its internal iron homeostasis, with specific organelles such as mitochondria showing specialized responses. However, during ischemia, neurons are challenged with excess extracellular glutamate in the presence of high levels of extracellular iron; this causes glutamate receptor overactivation that boosts neuronal iron uptake and a subsequent overproduction of membrane peroxides. This glutamate-driven neuronal death can be attenuated by iron-chelating compounds or free radical scavenger molecules. Moreover, vascular wall rupture in hemorrhagic stroke results in the accumulation and lysis of iron-rich red blood cells at the brain parenchyma and the subsequent presence of hemoglobin and heme iron at the extracellular milieu, thereby contributing to iron-induced lipid peroxidation and cell death. This review summarizes recent progresses made in understanding the ferroptosis component underlying both ischemic and hemorrhagic stroke subtypes.

4.
Redox Biol ; 15: 143-158, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29248829

RESUMO

Despite transferrin being the main circulating carrier of iron in body fluids, and iron overload conditions being known to worsen stroke outcome through reactive oxygen species (ROS)-induced damage, the contribution of blood transferrin saturation (TSAT) to stroke brain damage is unknown. The objective of this study was to obtain evidence on whether TSAT determines the impact of experimental ischemic stroke on brain damage and whether iron-free transferrin (apotransferrin, ATf)-induced reduction of TSAT is neuroprotective. We found that experimental ischemic stroke promoted an early extravasation of circulating iron-loaded transferrin (holotransferrin, HTf) to the ischemic brain parenchyma. In vitro, HTf was found to boost ROS production and to be harmful to primary neuronal cultures exposed to oxygen and glucose deprivation. In stroked rats, whereas increasing TSAT with exogenous HTf was detrimental, administration of exogenous ATf and the subsequent reduction of TSAT was neuroprotective. Mechanistically, ATf did not prevent extravasation of HTf to the brain parenchyma in rats exposed to ischemic stroke. However, ATf in vitro reduced NMDA-induced neuronal uptake of HTf and also both the NMDA-mediated lipid peroxidation derived 4-HNE and the resulting neuronal death without altering Ca2+-calcineurin signaling downstream the NMDA receptor. Removal of transferrin from the culture media or blockade of transferrin receptors reduced neuronal death. Together, our data establish that blood TSAT exerts a critical role in experimental stroke-induced brain damage. In addition, our findings suggest that the protective effect of ATf at the neuronal level resides in preventing NMDA-induced HTf uptake and ROS production, which in turn reduces neuronal damage.


Assuntos
Apoproteínas/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Sobrecarga de Ferro/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Transferrina/administração & dosagem , Animais , Apoproteínas/sangue , Isquemia Encefálica/sangue , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Desferroxamina/administração & dosagem , Feminino , Humanos , Ferro/sangue , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Espécies Reativas de Oxigênio/sangue , Receptores da Transferrina/sangue , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Transferrina/metabolismo
5.
Crit Care ; 15(3): R124, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21569477

RESUMO

INTRODUCTION: Survivors of critical illness often have significant long-term brain dysfunction, and routine clinical procedures like mechanical ventilation (MV) may affect long-term brain outcome. We aimed to investigate the effect of the increase of tidal volume (Vt) on brain activation in a rat model. METHODS: Male Sprague Dawley rats were randomized to three groups: 1) Basal: anesthetized unventilated animals, 2) low Vt (LVt): MV for three hours with Vt 8 ml/kg and zero positive end-expiratory pressure (ZEEP), and 3) high Vt (HVt) MV for three hours with Vt 30 ml/kg and ZEEP. We measured lung mechanics, mean arterial pressure (MAP), arterial blood gases, and plasma and lung levels of cytokines. We used immunohistochemistry to examine c-fos as a marker of neuronal activation. An additional group of spontaneously breathing rats was added to discriminate the effect of surgical procedure and anesthesia in the brain. RESULTS: After three hours on LVt, PaO2 decreased and PaCO2 increased significantly. MAP and compliance remained stable in MV groups. Systemic and pulmonary inflammation was higher in MV rats than in unventilated rats. Plasma TNFα was significantly higher in HVt than in LVt. Immunopositive cells to c-fos in the retrosplenial cortex and thalamus increased significantly in HVt rats but not in LVt or unventilated rats. CONCLUSIONS: MV promoted brain activation. The intensity of the response was higher in HVt animals, suggesting an iatrogenic effect of MV on the brain. These findings suggest that this novel cross-talking mechanism between the lung and the brain should be explored in patients undergoing MV.


Assuntos
Lesões Encefálicas/fisiopatologia , Encéfalo/fisiologia , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar/fisiologia , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Pulmão/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/análise , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA