Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Lipidol ; 11(6): 1432-1440.e4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066094

RESUMO

CONTEXT: Approximately 20% to 40% of clinically defined familial hypercholesterolemia (FH) cases do not show a causative mutation in candidate genes (mutation-negative FH), and some of them may have a polygenic origin. OBJECTIVE: The aim of this work was to study the prevalence of ABCG5/G8 genetic variants in mutation-negative FH, as defects in these genes relate to intestinal hyperabsorption of cholesterol and thus ABCG5/G8 variants could explain in part the mechanism of hypercholesterolemia. DESIGN, SETTING, AND PATIENTS: We sequenced the ABCG5/G8 genes in 214 mutation-negative FH and 97 controls. Surrogate markers of cholesterol absorption (5α-cholestanol, ß-sitosterol, campesterol, stigmasterol, and sitostanol) were quantified by high-performance liquid chromatography-tandem mass spectrometry in both studied groups. RESULTS: We found 8 mutation-negative FH patients (3.73%) with a pathogenic mutation in ABCG5/G8 genes. We observed significantly higher concentration of surrogate markers of cholesterol absorption in mutation-negative FH than in controls. In addition, we found significantly higher concentrations of cholesterol absorption markers in mutation-negative FH with ABCG5/G8 defects than in mutation-negative, ABCG5/G8-negative FH. A gene score reflecting the number of common single nucleotide variants associated with hypercholesterolemia was significantly higher in cases than in controls (P = .032). Subjects with a gene score above the mean had significantly higher 5α-cholestanol and stigmasterol than those with a lower gene score. CONCLUSIONS: Mutation-negative FH subjects accumulate an excess of rare and common gene variations in ABCG5/G8 genes. This variation is associated with increased intestinal absorption of cholesterol, as determined by surrogate makers, suggesting that these loci contribute to hypercholesterolemia by enhancing intestinal cholesterol absorption.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , LDL-Colesterol/genética , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/genética , Lipoproteínas/genética , Adolescente , Adulto , Idoso , Colestanol/sangue , LDL-Colesterol/sangue , Feminino , Estudos de Associação Genética , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Esteróis/sangue , Adulto Jovem
2.
BMC Bioinformatics ; 18(1): 158, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270093

RESUMO

BACKGROUND: Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. RESULTS: We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. CONCLUSIONS: Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.


Assuntos
Análise Mutacional de DNA/métodos , DNA Mitocondrial , Aprendizado de Máquina , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Peptídeos/genética , Biologia Computacional/métodos , Humanos , Mitocôndrias/genética , Sensibilidade e Especificidade
3.
Clin Exp Ophthalmol ; 42(9): 856-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24800637

RESUMO

BACKGROUND: Mutations causing Leber hereditary optic neuropathy are usually homoplasmic, show incomplete penetrance, and many of the affected positions are not well conserved through evolution. A large percentage of patients harbouring these mutations have no family history of disease. Moreover, the transfer of the mutation in the cybrid model is frequently not accompanied by the transfer of the cellular, biochemical and molecular phenotype. All these features make difficult their classification as the etiologic factors for this disease. We report a patient who exhibits typical clinical features of Leber hereditary optic neuropathy but lacks all three of the most common mitochondrial DNA mutations. METHODS: The diagnosis was made based on clinical studies. The mitochondrial DNA was completely sequenced, and the candidate mutation was analysed in more than 18 000 individuals around the world, its conservation index was estimated in more than 3100 species from protists to mammals, its position was modelled in the crystal structure of a bacteria ortholog subunit, and its functional consequences were studied in a cybrid model. RESULTS: Genetic analysis revealed an m.3472T>C transition in the MT-ND1 gene that changes a phenylalanine to leucine at position 56. Bioinformatics, molecular-genetic analysis and functional studies suggest that this transition is the etiological factor for the disorder. CONCLUSIONS: This mutation expands the spectrum of deleterious changes in mitochondrial DNA-encoded complex I polypeptides associated with this pathology and highlights the difficulties in assigning pathogenicity to new homoplasmic mutations that show incomplete penetrance in sporadic Leber hereditary optic neuropathy patients.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Polimorfismo de Nucleotídeo Único , Adulto , Sequência de Bases , Análise Mutacional de DNA , Humanos , Masculino , Dados de Sequência Molecular , Atrofia Óptica Hereditária de Leber/diagnóstico , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Estrutura Secundária de Proteína , Testes de Campo Visual , Campos Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA