Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114352, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870011

RESUMO

Addressing the mononuclear phagocyte system (MPS) and macrophage M1/M2 activation is important in diagnosing hematological disorders and inflammatory pathologies and designing therapeutic tools. CSF1R is a reliable marker to identify all circulating MPS cells and tissue macrophages in humans using a single surface protein. CSF1R permits the quantification and isolation of monocyte and dendritic cell (DC) subsets in conjunction with CD14, CD16, and CD1c and is stable across the lifespan and sexes in the absence of overt pathology. Beyond cell detection, measuring M1/M2 activation in humans poses challenges due to response heterogeneity, transient signaling, and multiple regulation steps for transcripts and proteins. MPS cells respond in a conserved manner to M1/M2 pathways such as interleukin-4 (IL-4), steroids, interferon-γ (IFNγ), and lipopolysaccharide (LPS), for which we propose an ad hoc modular gene expression tool. Signature analysis highlights macrophage activation mosaicism in experimental samples, an emerging concept that points to mixed macrophage activation states in pathology.


Assuntos
Ativação de Macrófagos , Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Interferon gama/metabolismo , Lipopolissacarídeos/farmacologia , Feminino , Mosaicismo , Masculino , Monócitos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/genética , Antígenos CD1/metabolismo , Antígenos CD1/genética , Sistema Fagocitário Mononuclear/metabolismo , Glicoproteínas , Receptor de Fator Estimulador de Colônias de Macrófagos
2.
Front Immunol ; 14: 1141731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359536

RESUMO

Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ácidos Graxos Ômega-3 , Animais , Camundongos , Ácido Eicosapentaenoico/farmacologia , Interleucina-10/farmacologia , PPAR gama , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cicatrização , Colágeno/metabolismo , Suplementos Nutricionais
3.
BMC Biol ; 19(1): 246, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34794433

RESUMO

Cell membrane fusion and multinucleation in macrophages are associated with physiologic homeostasis as well as disease. Osteoclasts are multinucleated macrophages that resorb bone through increased metabolic activity resulting from cell fusion. Fusion of macrophages also generates multinucleated giant cells (MGCs) in white adipose tissue (WAT) of obese individuals. For years, our knowledge of MGCs in WAT has been limited to their description as part of crown-like structures (CLS) surrounding damaged adipocytes. However, recent evidence indicates that these cells can phagocytose oversized lipid remnants, suggesting that, as in osteoclasts, cell fusion and multinucleation are required for specialized catabolic functions. We thus reason that WAT MGCs can be viewed as functionally analogous to osteoclasts and refer to them in this article as adipoclasts. We first review current knowledge on adipoclasts and their described functions. In view of recent advances in single cell genomics, we describe WAT macrophages from a 'fusion perspective' and speculate on the ontogeny of adipoclasts. Specifically, we highlight the role of CD9 and TREM2, two plasma membrane markers of lipid-associated macrophages in WAT, which have been previously described as regulators of fusion and multinucleation in osteoclasts and MGCs. Finally, we consider whether strategies aiming to target WAT macrophages can be more selectively directed against adipoclasts.


Assuntos
Células Gigantes , Macrófagos , Fusão Celular , Humanos , Lipídeos , Glicoproteínas de Membrana , Osteoclastos , Receptores Imunológicos
4.
Sci Transl Med ; 13(608)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433639

RESUMO

Endometriosis is a common chronic inflammatory condition causing pelvic pain and infertility in women, with limited treatment options and 50% heritability. We leveraged genetic analyses in two species with spontaneous endometriosis, humans and the rhesus macaque, to uncover treatment targets. We sequenced DNA from 32 human families contributing to a genetic linkage signal on chromosome 7p13-15 and observed significant overrepresentation of predicted deleterious low-frequency coding variants in NPSR1, the gene encoding neuropeptide S receptor 1, in cases (predominantly stage III/IV) versus controls (P = 7.8 × 10-4). Significant linkage to the region orthologous to human 7p13-15 was replicated in a pedigree of 849 rhesus macaques (P = 0.0095). Targeted association analyses in 3194 surgically confirmed, unrelated cases and 7060 controls revealed that a common insertion/deletion variant, rs142885915, was significantly associated with stage III/IV endometriosis (P = 5.2 × 10-5; odds ratio, 1.23; 95% CI, 1.09 to 1.39). Immunohistochemistry, qRT-PCR, and flow cytometry experiments demonstrated that NPSR1 was expressed in glandular epithelium from eutopic and ectopic endometrium, and on monocytes in peritoneal fluid. The NPSR1 inhibitor SHA 68R blocked NPSR1-mediated signaling, proinflammatory TNF-α release, and monocyte chemotaxis in vitro (P < 0.01), and led to a significant reduction of inflammatory cell infiltrate and abdominal pain (P < 0.05) in a mouse model of peritoneal inflammation as well as in a mouse model of endometriosis. We conclude that the NPSR1/NPS system is a genetically validated, nonhormonal target for the treatment of endometriosis with likely increased relevance to stage III/IV disease.


Assuntos
Endometriose , Receptores Acoplados a Proteínas G/genética , Animais , Endometriose/tratamento farmacológico , Endometriose/genética , Endométrio , Feminino , Humanos , Macaca mulatta , Camundongos , Fator de Necrose Tumoral alfa
5.
Immunology ; 164(3): 587-601, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287854

RESUMO

Sepsis is a life-threatening condition involving a dysregulated immune response to infectious agents that cause injury to host tissues and organs. Current treatments are limited to early administration of antibiotics and supportive care. While appealing, the strategy of targeted inhibition of individual molecules in the inflammatory cascade has not proved beneficial. Non-targeted, systemic immunosuppression with steroids has shown limited efficacy and raises concern for secondary infection. Iminosugars are a class of small molecule glycomimetics with distinct inhibition profiles for glycan processing enzymes based on stereochemistry. Inhibition of host endoplasmic reticulum resident glycoprotein processing enzymes has demonstrated efficacy as a broad-spectrum antiviral strategy, but limited consideration has been given to the effects on host glycoprotein production and consequent disruption of signalling cascades. This work demonstrates that iminosugars inhibit dengue virus, bacterial lipopolysaccharide and fungal antigen-stimulated cytokine responses in human macrophages. In spite of decreased inflammatory mediator production, viral replication is suppressed in the presence of iminosugar. Transcriptome analysis reveals the key interaction of pathogen-induced endoplasmic reticulum stress, the resulting unfolded protein response and inflammation. Our work shows that iminosugars modulate these interactions. Based on these findings, we propose a new therapeutic role for iminosugars as treatment for sepsis-related inflammatory disorders associated with excess cytokine secretion.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Sepse/tratamento farmacológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antígenos de Fungos/imunologia , Células Cultivadas , Vírus da Dengue/imunologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Macrófagos , Cultura Primária de Células , Sepse/imunologia , Sepse/microbiologia , Receptor 4 Toll-Like/metabolismo , Resposta a Proteínas não Dobradas/imunologia
6.
Virology ; 562: 9-18, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242748

RESUMO

Monocytes/macrophages are important target cells for HIV-1. Here, we investigated whether HIV-1 induces changes in the macrophage gene expression profile to support viral replication. We observed that the macrophage gene expression profiles dramatically changed upon HIV-1 infection. The majority of the HIV-1 regulated genes were also differentially expressed in M2a macrophages. The biological functions associated with the HIV-1 induced gene expression profile in macrophages were mainly related to inflammatory responses. CD9 and ITGA3 were among the top genes upregulated upon HIV-1 infection. We showed that these genes support viral replication and that downregulation of these genes decreased HIV-1 replication in macrophages. Here we showed that HIV-1 infection of macrophages induces a gene expression profile that may dampen inflammatory responses. CD9 and ITGA3 were among the top genes regulated by HIV-1 and were shown to support viral production most likely at the level of viral budding and release.


Assuntos
HIV-1/fisiologia , Integrina alfa3/metabolismo , Macrófagos/virologia , Tetraspanina 29/metabolismo , Replicação Viral/fisiologia , Perfilação da Expressão Gênica , Humanos , Integrina alfa3/genética , Macrófagos/metabolismo , Tetraspanina 29/genética , Liberação de Vírus/fisiologia
7.
Front Immunol ; 12: 775326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975863

RESUMO

Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.


Assuntos
Células Espumosas/fisiologia , Gotículas Lipídicas/fisiologia , Tuberculose/imunologia , Células Espumosas/imunologia , Humanos , Triglicerídeos/biossíntese
8.
Front Microbiol ; 11: 1394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754123

RESUMO

Mycobacterium tuberculosis (Mtb) infects macrophages and macrophage-derived foam cells, a hallmark of granulomata in tuberculous lesions. We analyzed the effects of lipid accumulation in human primary macrophages and quantified strong triglyceride and phospholipid remodeling which depended on the dietary fatty acid used for the assay. The enrichment of >70% in triglyceride and phospholipids can alter cell membrane properties, signaling and phagocytosis in macrophages. In conventional macrophage cultures, cells are heterogeneous, small or large macrophages. In foam cells, a third population of 30% of cells with increased granularity can be detected. We found that foam cell formation is heterogenous and that lipid accumulation and foam cell formation reduces the phagocytosis of Mtb. Under the conditions tested, cell death was highly prevalent in macrophages, whereas foam cells were largely protected from this effect. Foam cells also supported slower Mtb replication, yet this had no discernible impact on the intracellular efficacy of four different antitubercular drugs. Foam cell formation had a significant impact in the inflammatory potential of the cells. TNF-α, IL-1ß, and prototypical chemokines were increased. The ratio of inflammatory IL-1ß, TNF-α, and IL-6 vs. anti-inflammatory IL-10 was significantly higher in response to Mtb vs. LPS, and was increased in foam cells compared to macrophages, suggestive of increased pro-inflammatory properties. Cytokine production correlated with NF-κB activation in our models. We conclude that foam cell formation reduces the host cell avidity for, and phagocytosis of, Mtb while protecting the cells from death. This protective effect is associated with enhanced inflammatory potential of foam cells and restricted intracellular growth of Mtb.

9.
EBioMedicine ; 59: 102964, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32861199

RESUMO

Mononuclear phagocytes are a widely distributed family of cells contributing to innate and adaptive immunity. Circulating monocytes and tissue macrophages participate in all stages of SARS COVID-19. They contribute to comorbidities predisposing to clinical infection, virus resistance and dissemination, and to host factors that determine disease severity, recovery and sequelae. Assays are available to detect viral infection and antibody responses, but no adequate tests have been developed to measure the activation level of monocytes and tissue macrophages, and the risk of progression to a fatal hyperinflammatory syndrome. Blood monocytes provide a window on the systemic immune response, from production to tissue recruitment, reflecting the impact of infection on the host. Ready availability of blood makes it possible to monitor severity and the risk of potentially lethal complications, by developing tests to assess the status of monocyte activation and its potential for further inflammatory dysregulation after recruitment to tissues and during recovery.


Assuntos
Infecções por Coronavirus/patologia , Monócitos/imunologia , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , COVID-19 , Comorbidade , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença
10.
J Innate Immun ; 11(6): 447-456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970346

RESUMO

In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.


Assuntos
Histiócitos/imunologia , Síndromes de Imunodeficiência/imunologia , Macrófagos/imunologia , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Complicações na Gravidez/imunologia , Viroses/imunologia , Animais , Feminino , Homeostase , Humanos , Tolerância Imunológica , Imunidade Inata , Imunomodulação , Gravidez
11.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L369-L384, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520687

RESUMO

Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.


Assuntos
Asma/imunologia , Macrófagos/imunologia , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Humanos , Inflamação/imunologia , Macrófagos Alveolares/imunologia
12.
Front Microbiol ; 9: 1028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875747

RESUMO

Macrophages play a central role in tuberculosis, as the site of primary infection, inducers and effectors of inflammation, innate and adaptive immunity, as well as mediators of tissue destruction and repair. Early descriptions by pathologists have emphasized their morphological heterogeneity in granulomas, followed by delineation of T lymphocyte-dependent activation of anti-mycobacterial resistance. More recently, powerful genetic and molecular tools have become available to describe macrophage cellular properties and their role in host-pathogen interactions. In this review we discuss aspects of macrophage heterogeneity relevant to the pathogenesis of tuberculosis and, conversely, lessons that can be learnt from mycobacterial infection, with regard to the immunobiological functions of macrophages in homeostasis and disease.

13.
Br J Sports Med ; 52(6): 359-367, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29118051

RESUMO

BACKGROUND: Recent investigation of human tissue and cells from positional tendons such as the rotator cuff has clarified the importance of inflammation in the development and progression of tendon disease. These mechanisms remain poorly understood in disease of energy-storing tendons such as the Achilles. Using tissue biopsies from patients, we investigated if inflammation is a feature of Achilles tendinopathy and rupture. METHODS: We studied Achilles tendon biopsies from symptomatic patients with either mid-portion tendinopathy or rupture for evidence of abnormal inflammatory signatures. Tendon-derived stromal cells from healthy hamstring and diseased Achilles were cultured to determine the effects of cytokine treatment on expression of inflammatory markers. RESULTS: Tendinopathic and ruptured Achilles highly expressed CD14+ and CD68+ cells and showed a complex inflammation signature, involving NF-κB, interferon and STAT-6 activation pathways. Interferon markers IRF1 and IRF5 were highly expressed in tendinopathic samples. Achilles ruptures showed increased PTGS2 and interleukin-8 expression. Tendinopathic and ruptured Achilles tissues expressed stromal fibroblast activation markers podoplanin and CD106. Tendon cells isolated from diseased Achilles showed increased expression of pro-inflammatory and stromal fibroblast activation markers after cytokine stimulation compared with healthy hamstring tendon cells. CONCLUSIONS: Tissue and cells derived from tendinopathic and ruptured Achilles tendons show evidence of chronic (non-resolving) inflammation. The energy-storing Achilles shares common cellular and molecular inflammatory mechanisms with functionally distinct rotator cuff positional tendons. Differences seen in the profile of ruptured Achilles are likely to be attributable to a superimposed phase of acute inflammation and neo-vascularisation. Strategies that target chronic inflammation are of potential therapeutic benefit for patients with Achilles tendon disease.


Assuntos
Tendão do Calcâneo/fisiopatologia , Inflamação/patologia , Ruptura/patologia , Tendinopatia/patologia , Tendão do Calcâneo/citologia , Adulto , Idoso , Biomarcadores/análise , Biópsia , Células Cultivadas , Feminino , Músculos Isquiossurais/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Células Estromais/citologia , Adulto Jovem
14.
JCI Insight ; 2(7): e91868, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28405622

RESUMO

In each influenza season, a distinct group of young, otherwise healthy individuals with no risk factors succumbs to life-threatening infection. To better understand the cause for this, we analyzed a broad range of immune responses in blood from a unique cohort of patients, comprising previously healthy individuals hospitalized with and without respiratory failure during one influenza season, and infected with one specific influenza A strain. This analysis was compared with similarly hospitalized influenza patients with known risk factors (total of n = 60 patients recruited). We found a sustained increase in a specific subset of proinflammatory monocytes, with high TNF-α expression and an M1-like phenotype (independent of viral titers), in these previously healthy patients with severe disease. The relationship between M1-like monocytes and immunopathology was strengthened using murine models of influenza, in which severe infection generated using different models (including the high-pathogenicity H5N1 strain) was also accompanied by high levels of circulating M1-like monocytes. Additionally, a raised M1/M2 macrophage ratio in the lungs was observed. These studies identify a specific subtype of monocytes as a modifiable immunological determinant of disease severity in this subgroup of severely ill, previously healthy patients, offering potential novel therapeutic avenues.


Assuntos
Influenza Humana/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Virus da Influenza A Subtipo H5N1 , Influenza Humana/patologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fenótipo , Carga Viral , Adulto Jovem
15.
Arthritis Res Ther ; 19(1): 16, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122639

RESUMO

BACKGROUND: Growing evidence supports a key role for inflammation in the onset and progression of tendinopathy. However, the effect of the inflammatory infiltrate on tendon cells is poorly understood. METHODS: We investigated stromal fibroblast activation signatures in tissues and cells from patients with tendinopathy. Diseased tendons were collected from well-phenotyped patient cohorts with supraspinatus tendinopathy before and after sub-acromial decompression treatment. Healthy tendons were collected from patients undergoing shoulder stabilisation or anterior cruciate ligament repair. Stromal fibroblast activation markers including podoplanin (PDPN), CD106 (VCAM-1) and CD248 were investigated by immunostaining, flow cytometry and RT-qPCR. RESULTS: PDPN, CD248 and CD106 were increased in diseased compared to healthy tendon tissues. This stromal fibroblast activation signature persisted in tendon biopsies in patients at 2-4 years post treatment. PDPN, CD248 and CD106 were increased in diseased compared to healthy tendon cells. IL-1ß treatment induced PDPN and CD106 but not CD248. IL-1ß treatment induced NF-κB target genes in healthy cells, which gradually declined following replacement with cytokine-free medium, whilst PDPN and CD106 remained above pre-stimulated levels. IL-1ß-treated diseased cells had more profound induction of PDPN and CD106 and sustained expression of IL6 and IL8 mRNA compared to IL-1ß-treated healthy cells. CONCLUSIONS: We conclude that stromal fibroblast activation markers are increased and persist in diseased compared to healthy tendon tissues and cells. Diseased tendon cells have distinct stromal fibroblast populations. IL-1ß treatment induced persistent stromal fibroblast activation which was more profound in diseased cells. Persistent stromal fibroblast activation may be implicated in the development of chronic inflammation and recurrent tendinopathy. Targeting this stromal fibroblast activation signature is a potential therapeutic strategy.


Assuntos
Fibroblastos/metabolismo , Células Estromais/citologia , Tendinopatia/genética , Tendões/metabolismo , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Doença Crônica , Feminino , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-1beta/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tendinopatia/metabolismo , Tendinopatia/patologia , Tendões/efeitos dos fármacos , Tendões/patologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adulto Jovem
16.
Cell Rep ; 13(9): 1937-48, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26628365

RESUMO

Multinucleated giant cells (MGCs) form by fusion of macrophages and are presumed to contribute to the removal of debris from tissues. In a systematic in vitro analysis, we show that IL-4-induced MGCs phagocytosed large and complement-opsonized materials more effectively than their unfused M2 macrophage precursors. MGC expression of complement receptor 4 (CR4) was increased, but it functioned primarily as an adhesion integrin. In contrast, although expression of CR3 was not increased, it became functionally activated during fusion and was located on the extensive membrane ruffles created by excess plasma membrane arising from macrophage fusion. The combination of increased membrane area and activated CR3 specifically equips MGCs to engulf large complement-coated targets. Moreover, we demonstrate these features in vivo in the recently described complement-dependent therapeutic elimination of systemic amyloid deposits by MGCs. MGCs are evidently more than the sum of their macrophage parts.


Assuntos
Células Gigantes/metabolismo , Interleucina-4/farmacologia , Fagocitose/efeitos dos fármacos , Amiloide/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Antígeno CD11c/metabolismo , Antígenos CD18/metabolismo , Complemento C3/deficiência , Complemento C3/genética , Complemento C3/metabolismo , Cricetinae , Células Gigantes/imunologia , Humanos , Integrina alfaXbeta2/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ratos , Receptores de IgG/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Regulação para Cima/efeitos dos fármacos
17.
Virology ; 486: 94-104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432022

RESUMO

HIV-1 exploits the cellular machinery for replication and therefore several interactions with cellular factors take place, some of which are yet unknown. We identified GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1) as a cellular factor that restricts HIV-1, by analyzing transcriptome profiles of in vitro-cytokine-activated macrophages that are non-permissive to HIV-1 replication. Silencing of G3BP1 by RNA interference resulted in increased HIV-1 replication in primary T-cells and macrophages, but did not affect replication of other retroviruses. G3BP1 specifically interacted with HIV-1 RNA in the cytoplasm, suggesting that it sequesters viral transcripts, thus preventing translation or packaging. G3BP1 was highly expressed in resting naïve or memory T-cells from healthy donors and HIV-1 infected patients, but significantly lower in IL-2-activated T-cells. These results strongly suggest that G3BP1 captures HIV-1 RNA transcripts and thereby restricts mRNA translation, viral protein production and virus particle formation.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por HIV/enzimologia , HIV-1/fisiologia , Macrófagos/metabolismo , RNA Viral/metabolismo , Linfócitos T/metabolismo , Replicação Viral , Proteínas de Transporte/genética , DNA Helicases , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Macrófagos/virologia , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA Viral/genética , Linfócitos T/virologia
18.
Sci Rep ; 5: 12524, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224331

RESUMO

Macrophages differentiated from human induced pluripotent stem cells (IPSDMs) are a potentially valuable new tool for linking genotype to phenotype in functional studies. However, at a genome-wide level these cells have remained largely uncharacterised. Here, we compared the transcriptomes of naïve and lipopolysaccharide (LPS) stimulated monocyte-derived macrophages (MDMs) and IPSDMs using RNA-Seq. The IPSDM and MDM transcriptomes were broadly similar and exhibited a highly conserved response to LPS. However, there were also significant differences in the expression of genes associated with antigen presentation and tissue remodelling. Furthermore, genes coding for multiple chemokines involved in neutrophil recruitment were more highly expressed in IPSDMs upon LPS stimulation. Additionally, analysing individual transcript expression identified hundreds of genes undergoing alternative promoter and 3' untranslated region usage following LPS treatment representing a previously under-appreciated level of regulation in the LPS response.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Transcriptoma/efeitos dos fármacos , Regiões 3' não Traduzidas , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Regiões Promotoras Genéticas , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA
19.
Expert Rev Clin Immunol ; 11(1): 5-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25434688

RESUMO

'There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the phagocytes,' so declaimed Sir Ralph Bloomfield Bonington in The Doctor's Dilemma, Act 1, by George Bernard Shaw (1906). More often nowadays, the need is to calm the phagocytes, given their role in inflammation and tissue damage. In spite of the growth of cellular and molecular information gained from studies in macrophage cell culture, mouse models and, to a lesser extent, human investigations, and the importance of macrophages in pathogenesis in a wide range of chronic disease processes, there is still a substantial shortfall in terms of clinical applications. In this review, we summarize concepts derived from macrophage studies and suggest possible properties suitable for diagnosis, prognosis and selective targeting of macrophage pathogenic functions.


Assuntos
Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Alergia e Imunologia/história , Animais , Doença Crônica , História do Século XX , História do Século XXI , Humanos , Camundongos
20.
Immunity ; 41(1): 14-20, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25035950

RESUMO

Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Terminologia como Assunto , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Guias como Assunto , Humanos , Fator Estimulador de Colônias de Macrófagos/imunologia , Camundongos , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA