Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 149: 108306, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345111

RESUMO

The pathophysiological progress of Parkinson's disease leads through degeneration of dopaminergic neurons in the substantia nigra to complete cell death and lack of dopamine in the striatum where it modulates motor functions. Transplantation of dopaminergic stem cell-derived neurons is a possible therapy to restore dopamine levels. We have previously presented multifunctional pyrolytic carbon coated leaky optoelectrical fibers (LOEFs) with laser ablated micro-optical windows (µOWs) as carriers for channelrhodopsin-2 modified optogenetically active neurons for light-induced on-demand dopamine release and amperometric real-time detection. To increase the dopamine release by stimulating a larger neuronal population with light, we present here a novel approach to generate µOWs through laser ablation around the entire circumference of optical fibers to obtain Omni-LOEFs. Cyclic voltammetric characterization of the pyrolytic carbon showed that despite the increased number of µOWs, the electrochemical properties were not deteriorated. Finally, we demonstrate that the current recorded during real-time detection of dopamine upon light-induced stimulation of neurons differentiated on Omni-LOEFs is significantly higher compared to recordings from the same number of cells seeded on LOEFs with µOWs only on one side. Moreover, by varying the cell seeding density, we show that the recorded current is proportional to the dimension of the cell population.


Assuntos
Dopamina , Optogenética , Neurônios/fisiologia , Carbono/metabolismo
2.
Front Pharmacol ; 12: 773925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126116

RESUMO

Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.

3.
Eur J Neurosci ; 49(4): 497-509, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471165

RESUMO

Parkinson's disease is a neurodegenerative disease resulting in degeneration of midbrain dopaminergic neurons. Exploratory studies using human foetal tissue or predifferentiated stem cells have suggested that intracerebral transplantation of dopaminergic precursor cells may become an effective treatment for patients with Parkinson's disease. However, strategies for dopaminergic stem cell differentiation vary widely in efficiency, and better methods still need to be developed. Hypoxia Inducible Factor 1 (HIF-1) is a transcription factor involved in the regulation of genes important for cellular adaption to hypoxia and low glucose supply. HIF-1 is to a large degree regulated by the availability of oxygen as in its presence, the subunit HIF-1α is degraded by HIF prolyl hydroxylase enzymes (HPHs). Stabilization of HIF-1α through inhibition of HPHs has been shown to increase dopaminergic differentiation of stem cells and to protect dopaminergic neurons against neurotoxins. This study investigated the effects of noncompetitive (FG-0041) and competitive (Compound A and JNJ-42041935) HIF-1α stabilizing compounds on the dopaminergic differentiation of human neural stem cells. Treatment with all HPH inhibitors at high oxygen tension (20%) resulted in HIF-1α stabilization as assessed by immunocytochemistry for HIF-1α and detection of increased levels of vascular endothelial growth factor in the conditioned culture medium. Following 10 days of HIF-1α stabilization, the cultures displayed a slightly reduced proliferative activity and significantly increased relative levels of tyrosine hydroxylase-positive dopaminergic neurons. In conclusion, HIF-1α stabilization may represent a promising strategy for the generation of dopaminergic neurons intended for use in experimental in vitro studies and cell replacement therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular , Feto , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Mesencéfalo/citologia , Doença de Parkinson , Fenantrolinas/farmacologia , Pirazóis/farmacologia
4.
PLoS One ; 13(11): e0206534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395586

RESUMO

BACKGROUND: Human adult adipose-derived stem cells (hADSCs) have become the most promising cell source for regenerative medicine. However the prolonged ex vivo expansion periods required to obtain the necessary therapeutic dose promotes progressive senescence, with the concomitant reduction of their therapeutic potential. AIM AND SCOPE: A better understanding of the determinants of hADSC senescence is needed to improve biosafety while preserving therapeutic efficiency. Here, we investigated the association between deregulation of the imprinted DLK1-DIO3 region and replicative senescence in hADSC cultures. METHODS: We compared hADSC cultures at short (PS) and prolonged (PL) passages, both in standard and low [O2] (21 and 3%, respectively), in relation to replicative senescence. hADSCs were evaluated for expression alterations in the DLK1-DIO3 region on chromosome 14q32, and particularly in its main miRNA cluster. RESULTS: Comparison of hADSCs cultured at PL or PS surprisingly showed a quite significant fraction (69%) of upregulated miRNAs in PL cultures mapping to the imprinted 14q32 locus, the largest miRNA cluster described in the genome. In agreement, expression of the lncRNA MEG3 (Maternally Expressed 3; Meg3/Gtl2), cultured at 21 and 3% [O2], was also significantly higher in PL than in PS passages. During hADSC replicative senescence the AcK16H4 activating mark was found to be significantly associated with the deregulation of the entire DLK1-DIO3 locus, with a secondary regulatory role for the methylation of DMR regions. CONCLUSION: A direct relationship between DLK1-DIO3 deregulation and replicative senescence of hADSCs is reported, involving upregulation of a very significant fraction of its largest miRNA cluster (14q32.31), paralleled by the progressive overexpression of the lncRNA MEG3, which plays a central role in the regulation of Dlk1/Dio3 activation status in mice.


Assuntos
Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Proliferação de Células/genética , Células Cultivadas , Senescência Celular/genética , Cromossomos Humanos Par 14/genética , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Regulação para Cima
5.
PLoS One ; 13(1): e0191207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29338033

RESUMO

Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of ß-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson's disease.


Assuntos
Monóxido de Carbono/administração & dosagem , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Silanos/administração & dosagem , Silanos/metabolismo
6.
Neural Regen Res ; 11(1): 49-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26981077

RESUMO

Human neural stem cells (hNSCs) derived from the ventral mesencephalon are powerful research tools and candidates for cell therapies in Parkinson's disease. However, their clinical translation has not been fully realized due, in part, to the limited ability to track stem cell regional localization and survival over long periods of time after in vivo transplantation. Magnetic resonance imaging provides an excellent non-invasive method to study the fate of transplanted cells in vivo. For magnetic resonance imaging cell tracking, cells need to be labeled with a contrast agent, such as magnetic nanoparticles, at a concentration high enough to be easily detected by magnetic resonance imaging. Grafting of human neural stem cells labeled with magnetic nanoparticles allows cell tracking by magnetic resonance imaging without impairment of cell survival, proliferation, self-renewal, and multipotency. However, the results reviewed here suggest that in long term grafting, activated microglia and macrophages could contribute to magnetic resonance imaging signal by engulfing dead labeled cells or iron nanoparticles dispersed freely in the brain parenchyma over time.

7.
Stem Cells Transl Med ; 4(6): 670-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925835

RESUMO

UNLABELLED: Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. SIGNIFICANCE: Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms of marrow-isolated adult multilineage inducible cells and human neural stem cells both adhered to neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo organotypic model of PD made from brain sagittal slices.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Células-Tronco Neurais/transplante , Neurotrofina 3/farmacologia , Transtornos Parkinsonianos/terapia , Transplante de Células-Tronco , Adulto , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Preparações de Ação Retardada/farmacologia , Modelos Animais de Doenças , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Ratos
8.
J Nanobiotechnology ; 13: 20, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25890124

RESUMO

BACKGROUND: Magnetic resonance imaging is the ideal modality for non-invasive in vivo cell tracking allowing for longitudinal studies over time. Cells labeled with superparamagnetic iron oxide nanoparticles have been shown to induce sufficient contrast for in vivo magnetic resonance imaging enabling the in vivo analysis of the final location of the transplanted cells. For magnetic nanoparticles to be useful, a high internalization efficiency of the particles is required without compromising cell function, as well as validation of the magnetic nanoparticles behaviour inside the cells. RESULTS: In this work, we report the development, optimization and validation of an efficient procedure to label human neural stem cells with commercial nanoparticles in the absence of transfection agents. Magnetic nanoparticles used here do not affect cell viability, cell morphology, cell differentiation or cell cycle dynamics. Moreover, human neural stem cells progeny labeled with magnetic nanoparticles are easily and non-invasively detected long time after transplantation in a rat model of Parkinson's disease (up to 5 months post-grafting) by magnetic resonance imaging. CONCLUSIONS: These findings support the use of commercial MNPs to track cells for short- and mid-term periods after transplantation for studies of brain cell replacement therapy. Nevertheless, long-term MR images should be interpreted with caution due to the possibility that some MNPs may be expelled from the transplanted cells and internalized by host microglial cells.


Assuntos
Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco Neurais/química , Doença de Parkinson/patologia , Animais , Sobrevivência Celular , Rastreamento de Células/métodos , Transplante de Células/métodos , Células Cultivadas , Dextranos/química , Feminino , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Transfecção/métodos
9.
PLoS One ; 10(3): e0118499, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25764185

RESUMO

A better understanding of the molecular mechanisms governing stem cell self-renewal will foster the use of different types of stem cells in disease modeling and cell therapy strategies. Immortalization, understood as the capacity for indefinite expansion, is needed for the generation of any cell line. In the case of v-myc immortalized multipotent human Neural Stem Cells (hNSCs), we hypothesized that v-myc immortalization could induce a more de-differentiated state in v-myc hNSC lines. To test this, we investigated the expression of surface, biochemical and genetic markers of stemness and pluripotency in v-myc immortalized and control hNSCs (primary precursors, that is, neurospheres) and compared these two cell types to human Embryonic Stem Cells (hESCs) and fibroblasts. Using a Hierarchical Clustering method and a Principal Component Analysis (PCA), the v-myc hNSCs associated with their counterparts hNSCs (in the absence of v-myc) and displayed a differential expression pattern when compared to hESCs. Moreover, the expression analysis of pluripotency markers suggested no evidence supporting a reprogramming-like process despite the increment in telomerase expression. In conclusion, v-myc expression in hNSC lines ensures self-renewal through the activation of some genes involved in the maintenance of stem cell properties in multipotent cells but does not alter the expression of key pluripotency-associated genes.


Assuntos
Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Marcadores Genéticos/genética , Células-Tronco Neurais/fisiologia , Proteína Oncogênica p55(v-myc)/metabolismo , Diferenciação Celular , Divisão Celular , Células Cultivadas , Análise por Conglomerados , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Células-Tronco Neurais/citologia , Análise de Componente Principal
10.
PLoS One ; 9(5): e96465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788190

RESUMO

Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1 ± 0.5 and 17.1 ± 0.4 (P<0.001); forebrain: 1.9 ± 0.4 and 3.9 ± 0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced ß-tubulin III and GFAP expression in both cultures. Up-regulation of ß-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Células-Tronco Fetais/citologia , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Fetais/metabolismo , Feto , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Mesencéfalo , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Prosencéfalo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
EMBO J ; 33(7): 762-78, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24521670

RESUMO

A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.


Assuntos
Regulação Enzimológica da Expressão Gênica , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Proteínas/genética , Transdução de Sinais , Animais , Apoptose , Comportamento Animal , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Glicólise/efeitos dos fármacos , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Animais , Mutação de Sentido Incorreto , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurotoxinas/farmacologia , Fosforilação Oxidativa , Regiões Promotoras Genéticas/genética , Proteínas/metabolismo , Ácido Quinolínico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Inibidora de ATPase
12.
Int J Nanomedicine ; 7: 1511-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619509

RESUMO

BACKGROUND: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. METHODS: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods. RESULTS: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death. CONCLUSION: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.


Assuntos
Glioblastoma/terapia , Hipertermia Induzida/métodos , Nanopartículas Metálicas/uso terapêutico , Caspase 3/metabolismo , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/enzimologia , Glioblastoma/patologia , Ouro , Humanos , L-Lactato Desidrogenase/metabolismo , Terapia a Laser , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanomedicina , Ressonância de Plasmônio de Superfície
13.
Behav Brain Res ; 232(1): 225-32, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22537773

RESUMO

Parkinson's disease (PD) motor symptoms are caused by the progressive degeneration of ventral mesencephalic (VM) dopaminergic neurons (DAn) in the Substantia Nigra pars compacta (SNpc). Cell replacement therapy for PD is based on the concept that the implantation of DAn in the striatum can functionally restore the dopamine levels lost in the disease. In the current study we have used an immortalized human VM neural stem cell line (hVM1) that generates DAn with the A9 phenotype. We have previously found that the forced expression of Bcl-X(L) in these cells enhances DAn generation and improves, short-term, d-amphetamine-induced rotation after transplantation in the 6-OH-DA rat model of PD 2-month post-grafting. Since functional maturation of human A9 DAn in vivo requires long survival times, in the present study we investigated the behavioral amelioration induced by the transplantation of these precursors (naïve and Bcl-X(L)-modified) in the striatum of Parkinsonian rats for up to 5 months. The main findings observed are an improvement on drug-induced behaviour and importantly, in spontaneous behavior tests for both cell-transplanted groups. Finally, we have also tested whether the grafts could ameliorate cognitive performance in PD, in addition to motor deficits. Significant difference was observed for T-maze alternation test in the cell-transplanted animals as compared to sham operated ones. To our knowledge, this is the first report showing an amelioration in spontaneous motor behavior and in cognitive performance in Parkinsonian animals after receiving human VM neural stem cell grafts. Histological studies confirmed that the grafts generated mature dopaminergic cells.


Assuntos
Comportamento Animal/fisiologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Neurais/transplante , Doença de Parkinson Secundária/psicologia , Doença de Parkinson Secundária/terapia , Proteína bcl-X/biossíntese , Proteína bcl-X/genética , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dextroanfetamina/farmacologia , Feminino , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Microscopia de Fluorescência , Atividade Motora/fisiologia , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Comportamento Estereotipado/efeitos dos fármacos , Simpatolíticos , Proteína bcl-X/fisiologia
14.
Mol Biol Cell ; 23(7): 1167-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323293

RESUMO

During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)(+)/BTG family member 2 (Btg2)(-), which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53-p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis.


Assuntos
Sinalização do Cálcio/fisiologia , Ciclo Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citosol/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
15.
PLoS One ; 7(12): e52714, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300748

RESUMO

A major challenge for further development of drug screening procedures, cell replacement therapies and developmental studies is the identification of expandable human stem cells able to generate the cell types needed. We have previously reported the generation of an immortalized polyclonal neural stem cell (NSC) line derived from the human fetal ventral mesencephalon (hVM1). This line has been biochemically, genetically, immunocytochemically and electrophysiologically characterized to document its usefulness as a model system for the generation of A9 dopaminergic neurons (DAn). Long-term in vivo transplantation studies in parkinsonian rats showed that the grafts do not mature evenly. We reasoned that diverse clones in the hVM1 line might have different abilities to differentiate. In the present study, we have analyzed 9 hVM1 clones selected on the basis of their TH generation potential and, based on the number of v-myc copies, v-myc down-regulation after in vitro differentiation, in vivo cell cycle exit, TH⁺ neuron generation and expression of a neuronal mature marker (hNSE), we selected two clones for further in vivo PD cell replacement studies. The conclusion is that homogeneity and clonality of characterized NSCs allow transplantation of cells with controlled properties, which should help in the design of long-term in vivo experiments.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Células-Tronco Neurais/fisiologia , Doença de Parkinson Secundária/terapia , Animais , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Neurônios Dopaminérgicos/transplante , Regulação para Baixo , Feminino , Dosagem de Genes , Expressão Gênica , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Mesencéfalo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Células-Tronco Neurais/transplante , Proteína Oncogênica p55(v-myc)/genética , Proteína Oncogênica p55(v-myc)/metabolismo , Ratos , Ratos Sprague-Dawley , Pesquisa com Células-Tronco
16.
Exp Neurol ; 223(2): 653-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20122925

RESUMO

The human fetal ventral mesencephalon-derived stem cell line, hVM1, yields high number of tyrosine hydroxylase-expressing presumed dopaminergic neurons upon in vitro differentiation. Here we report that cells generated from this line differentiate into a neuronal phenotype, express electrophysiological properties of functional neurons and respond to neurotransmitters in vitro. However, the electrophysiological properties are immature and the cells require longer maturation time than possible under in vitro conditions.


Assuntos
Células-Tronco Embrionárias/citologia , Mesencéfalo/citologia , Neurônios/citologia , Neurônios/fisiologia , Transplante de Células-Tronco , Potenciais de Ação/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Meios de Cultura/farmacologia , Dopamina/metabolismo , Feto/citologia , Humanos , Técnicas de Patch-Clamp , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Biol Chem ; 285(13): 9881-9897, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20106970

RESUMO

Human neural stem cells derived from the ventral mesencephalon (VM) are powerful research tools and candidates for cell therapies in Parkinson disease. Previous studies with VM dopaminergic neuron (DAn) precursors indicated poor growth potential and unstable phenotypical properties. Using the model cell line hVM1 (human ventral mesencephalic neural stem cell line 1; a new human fetal VM stem cell line), we have found that Bcl-X(L) enhances the generation of DAn from VM human neural stem cells. Mechanistically, Bcl-X(L) not only exerts the expected antiapoptotic effect but also induces proneural (NGN2 and NEUROD1) and dopamine-related transcription factors, resulting in a high yield of DAn with the correct phenotype of substantia nigra pars compacta (SNpc). The expression of key genes directly involved in VM/SNpc dopaminergic patterning, differentiation, and maturation (EN1, LMX1B, PITX3, NURR1, VMAT2, GIRK2, and dopamine transporter) is thus enhanced by Bcl-X(L). These effects on neurogenesis occur in parallel to a decrease in glia generation. These in vitro Bcl-X(L) effects are paralleled in vivo, after transplantation in hemiparkinsonian rats, where hVM1-Bcl-X(L) cells survive, integrate, and differentiate into DAn, alleviating behavioral motor asymmetry. Bcl-X(L) then allows for human fetal VM stem cells to stably generate mature SNpc DAn both in vitro and in vivo and is thus proposed as a helpful factor for the development of cell therapies for neurodegenerative conditions, Parkinson disease in particular.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Células-Tronco/citologia , Proteína bcl-X/metabolismo , Animais , Apoptose , Comportamento Animal , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Potenciais da Membrana , Doença de Parkinson , Fenótipo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo
18.
J Neurochem ; 110(6): 1908-20, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19627448

RESUMO

Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic differentiation and survival of a human ventral mesencephalic stem cell line (hVM1). hVM1 cells and a Bcl-x(L) over-expressing subline (hVMbcl-x(L)) were differentiated by sequential treatment with fibroblast growth factor-8, forskolin, sonic hedgehog, and glial cell line-derived neurotrophic factor. After 10 days at 20% oxygen, hVMbcl-x(L) cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 +/- 0.8% to 17.2 +/- 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q-PCR-analysis revealed expression of several dopaminergic markers besides of TH just as dopamine was detected in the culture medium by HPLC analysis. Although Bcl-x(L)-over-expression reduced cell death in the cultures, it did not alter the relative content of GABAergic, neurons, while the content of astroglial cells was reduced in hVMbcl-x(L) cell cultures compared with control. We conclude that Bcl-x(L) and lowered oxygen tension act in concert to enhance dopaminergic differentiation and survival of human neural stem cells.


Assuntos
Diferenciação Celular/fisiologia , Dopamina/metabolismo , Células-Tronco Embrionárias/fisiologia , Neurônios/fisiologia , Oxigênio/farmacologia , Proteína bcl-X/fisiologia , Fator de Indução de Apoptose/metabolismo , Bromodesoxiuridina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Colforsina/farmacologia , Dibutiril GMP Cíclico/farmacologia , Feto , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteína HN/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ionóforos/farmacologia , L-Lactato Desidrogenase/metabolismo , Mesencéfalo/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Ésteres de Forbol/farmacologia , Transfecção/métodos , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína bcl-X/genética
19.
Exp Cell Res ; 315(11): 1860-74, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19327351

RESUMO

Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH+) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Cultura de Células/métodos , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Clonais/citologia , Células Clonais/metabolismo , Dopamina/metabolismo , Epigênese Genética , Expressão Gênica , Genes myc , Humanos , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transformação Genética
20.
J Neurosci ; 28(17): 4406-13, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18434519

RESUMO

Transplantation of genetically engineered cells into the CNS offers immense potential for the treatment of several neurological disorders. Monitoring expression levels of transgenes and following changes in cell function and distribution over time is critical in assessing therapeutic efficacy of such cells in vivo. We have engineered lentiviral vectors bearing fusions between different combinations of fluorescent and bioluminescent marker proteins and used bioluminescence imaging and intravital-scanning microscopy in real time to study the fate of human neural stem cells (hNSCs) at a cellular resolution in glioma-bearing brains in vivo. Using Renilla luciferase (Rluc)-DsRed2 or GFP-Rluc-expressing malignant human glioma model, transduced hNSCs were shown to migrate extensively toward gliomas, with hNSCs populating gliomas at 10 d after transplantation. Furthermore, transduced hNSCs survived longer in mice with gliomas than in normal brain, but did not modulate glioma progression in vivo. These studies demonstrate the utility of bimodal viral vectors and real-time imaging in evaluating fate of NSCs in diseased models and thus provide a platform for accelerating cell-based therapies for CNS disorders.


Assuntos
Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glioma/patologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Vetores Genéticos/genética , Glioma/genética , Glioma/cirurgia , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Camundongos Transgênicos , Neurônios/citologia , Neurônios/patologia , Neurônios/fisiologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA