Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2300096121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194457

RESUMO

The prevalence of overweight and obesity continues to rise in the population worldwide. Because it is an important predisposing factor for cancer, cardiovascular diseases, diabetes mellitus, and COVID-19, obesity reduces life expectancy. Adipose tissue (AT), the main fat storage organ with endocrine capacity, plays fundamental roles in systemic metabolism and obesity-related diseases. Dysfunctional AT can induce excess or reduced body fat (lipodystrophy). Dido1 is a marker gene for stemness; gene-targeting experiments compromised several functions ranging from cell division to embryonic stem cell differentiation, both in vivo and in vitro. We report that mutant mice lacking the DIDO N terminus show a lean phenotype. This consists of reduced AT and hypolipidemia, even when mice are fed a high-nutrient diet. DIDO mutation caused hypothermia due to lipoatrophy of white adipose tissue (WAT) and dermal fat thinning. Deep sequencing of the epididymal white fat (Epi WAT) transcriptome supported Dido1 control of the cellular lipid metabolic process. We found that, by controlling the expression of transcription factors such as C/EBPα or PPARγ, Dido1 is necessary for adipocyte differentiation, and that restoring their expression reestablished adipogenesis capacity in Dido1 mutants. Our model differs from other lipodystrophic mice and could constitute a new system for the development of therapeutic intervention in obesity.


Assuntos
Adipogenia , Lipodistrofia , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular , Dieta , Obesidade/genética , Sobrepeso
2.
Cells ; 13(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38247850

RESUMO

The regulated formation and resolution of R-loops is a natural process in physiological gene expression. Defects in R-loop metabolism can lead to DNA replication stress, which is associated with a variety of diseases and, ultimately, with cancer. The proteins PARP1, DIDO3, and DHX9 are important players in R-loop regulation. We previously described the interaction between DIDO3 and DHX9. Here, we show that, in mouse embryonic fibroblasts, the three proteins are physically linked and dependent on PARP1 activity. The C-terminal truncation of DIDO3 leads to the impairment of this interaction; concomitantly, the cells show increased replication stress and senescence. DIDO3 truncation also renders the cells partially resistant to in vitro oncogenic transformation, an effect that can be reversed by immortalization. We propose that PARP1, DIDO3, and DHX9 proteins form a ternary complex that regulates R-loop metabolism, preventing DNA replication stress and subsequent senescence.


Assuntos
Replicação do DNA , Fibroblastos , Poli(ADP-Ribose) Polimerase-1 , Animais , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/fisiologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/fisiologia , Senescência Celular/genética , Carcinogênese/genética
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142255

RESUMO

SARS-CoV-2 is a new coronavirus characterized by a high infection and transmission capacity. A significant number of patients develop inadequate immune responses that produce massive releases of cytokines that compromise their survival. Soluble factors are clinically and pathologically relevant in COVID-19 survival but remain only partially characterized. The objective of this work was to simultaneously study 62 circulating soluble factors, including innate and adaptive cytokines and their soluble receptors, chemokines and growth and wound-healing/repair factors, in severe COVID-19 patients who survived compared to those with fatal outcomes. Serum samples were obtained from 286 COVID-19 patients and 40 healthy controls. The 62 circulating soluble factors were quantified using a Luminex Milliplex assay. Results. The patients who survived had decreased levels of the following 30 soluble factors of the 62 studied compared to those with fatal outcomes, therefore, these decreases were observed for cytokines and receptors predominantly produced by the innate immune system-IL-1α, IL-1α, IL-18, IL-15, IL-12p40, IL-6, IL-27, IL-1Ra, IL-1RI, IL-1RII, TNFα, TGFα, IL-10, sRAGE, sTNF-RI and sTNF-RII-for the chemokines IL-8, IP-10, MCP-1, MCP-3, MIG and fractalkine; for the growth factors M-CSF and the soluble receptor sIL2Ra; for the cytokines involved in the adaptive immune system IFNγ, IL-17 and sIL-4R; and for the wound-repair factor FGF2. On the other hand, the patients who survived had elevated levels of the soluble factors TNFß, sCD40L, MDC, RANTES, G-CSF, GM-CSF, EGF, PDGFAA and PDGFABBB compared to those who died. Conclusions. Increases in the circulating levels of the sCD40L cytokine; MDC and RANTES chemokines; the G-CSF and GM-CSF growth factors, EGF, PDGFAA and PDGFABBB; and tissue-repair factors are strongly associated with survival. By contrast, large increases in IL-15, IL-6, IL-18, IL-27 and IL-10; the sIL-1RI, sIL1RII and sTNF-RII receptors; the MCP3, IL-8, MIG and IP-10 chemokines; the M-CSF and sIL-2Ra growth factors; and the wound-healing factor FGF2 favor fatal outcomes of the disease.


Assuntos
COVID-19 , Interleucina-27 , Quimiocina CCL5 , Quimiocina CX3CL1 , Quimiocina CXCL10 , Citocinas , Fator de Crescimento Epidérmico , Fator 2 de Crescimento de Fibroblastos , Fator Estimulador de Colônias de Granulócitos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-10 , Subunidade p40 da Interleucina-12 , Interleucina-15 , Interleucina-17 , Interleucina-18 , Interleucina-6 , Interleucina-8 , Fator Estimulador de Colônias de Macrófagos , SARS-CoV-2 , Fator de Crescimento Transformador alfa , Fator de Necrose Tumoral alfa
4.
J Immunol ; 205(3): 776-788, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591394

RESUMO

Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.


Assuntos
Reprogramação Celular/imunologia , Colite/imunologia , Regulação da Expressão Gênica/imunologia , Hormônio do Crescimento/imunologia , Macrófagos/imunologia , Fator de Transcrição MafB/imunologia , Animais , Bovinos , Reprogramação Celular/genética , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Hormônio do Crescimento/genética , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos
5.
Nucleic Acids Res ; 47(10): 5381-5394, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30931476

RESUMO

Alternative splicing is facilitated by accessory proteins that guide spliceosome subunits to the primary transcript. Many of these splicing factors recognize the RNA polymerase II tail, but SFPQ is a notable exception even though essential for mammalian RNA processing. This study reveals a novel role for Dido3, one of three Dido gene products, in alternative splicing. Binding of the Dido3 amino terminus to histones and to the polymerase jaw domain was previously reported, and here we show interaction between its carboxy terminus and SFPQ. We generated a mutant that eliminates Dido3 but preserves other Dido gene products, mimicking reduced Dido3 levels in myeloid neoplasms. Dido mutation suppressed SFPQ binding to RNA and increased skipping for a large group of exons. Exons bearing recognition sequences for alternative splicing factors were nonetheless included more efficiently. Reduced SFPQ recruitment may thus account for increased skipping of SFPQ-dependent exons, but could also generate a splicing factor surplus that becomes available to competing splice sites. Taken together, our data indicate that Dido3 is an adaptor that controls SFPQ utilization in RNA splicing. Distributing splicing factor recruitment over parallel pathways provides mammals with a simple mechanism to regulate exon usage while maintaining RNA splicing efficiency.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Fator de Processamento Associado a PTB/metabolismo , Animais , Reagentes de Ligações Cruzadas/química , Éxons , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Mutação , Ligação Proteica , RNA/química , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo
7.
Immunol Cell Biol ; 95(9): 814-823, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28611474

RESUMO

The p38 mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of immune and inflammatory processes. We used p38α-conditional, p38ß-deficient and p38α/ß double-null mouse models to address the role of these two p38 MAPK in CD4+ T cells, and found that p38α deficiency causes these cells to hyperproliferate. Our studies indicate that both p38α and p38ß are dispensable for T helper cell type 1 (Th1) differentiation but, by controlling interferon (IFN)γ and tumor necrosis factor (TNF)α production, are critical for normal Th1 effector function. We found that both p38α and p38ß modulate T-cell receptor-induced IFNγ and TNFα production, whereas only p38α regulates cytokine-induced IFNγ production. The lack of p38α and p38ß did not affect transcription and mRNA stability of Ifng. However, the absence of p38α in Th1 cells resulted in a decreased MNK1 phosphorylation after cytokine activation, and MNK1 inhibition blocked IFNγ production. Our results indicate that p38α regulates IFNγ secretion through the activation of the MNK1/eIF4E pathway of translation initiation and identify specific functions for p38α and p38ß in T-cell proliferation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células Th1/fisiologia , Animais , Proliferação de Células/genética , Células Cultivadas , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Fosforilação , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Stem Cell Reports ; 8(4): 1062-1075, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28330622

RESUMO

Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype. Dido3ΔCT ESC differentiation is rescued by ectopic expression of DIDO3, which binds the Dido locus via H3K4me3 and RNA POL II and induces DIDO1 expression. DIDO1, which is exported to cytoplasm, associates with, and is N-terminally phosphorylated by PKCiota. It binds the E3 ubiquitin ligase WWP2, which contributes to cell fate by OCT4 degradation, to allow expression of primitive endoderm (PE) markers. PE formation also depends on phosphorylated DIDO3 localization to centrosomes, which ensures their correct positioning for PE cell polarization. We propose that DIDO isoforms act as a switchboard that regulates genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Polaridade Celular , Proliferação de Células , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Mapas de Interação de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteólise , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
J Clin Invest ; 126(8): 3089-103, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27427981

RESUMO

M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-ß production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-ß expression, and p21 knockdown in human monocytes corroborated its role in IFN-ß regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação da Expressão Gênica , Interferon beta/metabolismo , Macrófagos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Sepse/imunologia , Idoso , Animais , Citocinas/metabolismo , Feminino , Humanos , Inflamação , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Monócitos/metabolismo , Fenótipo , Ligação Proteica , Multimerização Proteica , Sepse/terapia , Fator de Transcrição RelA/metabolismo
10.
Blood Cells Mol Dis ; 59: 25-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27282563

RESUMO

Chronic Myeloid Leukemia (CML), Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation without cell maturation impairment. CML pathogenesis is associated with the Ph chromosome leading to BCR-ABL tyrosine-kinase constitutive expression. The Ph negative MPN (PV, ET and PMF) are characterized by the mutation JAK2(V617F) of the JAK2 protein in the auto-inhibitory JH2 domain, which is found in most PV patients and in approximately half of ET and PMF patients. Considerable effort is being made to understand the role of JAK2(V617F) at the MPN initiation and to clarify the pathogenesis and apoptosis resistance in CML, PV, ET and PMF patients. In the present investigation, we evaluated the Death Inducer-Obliterator (DIDO) (variants DIDO 1, 2 and 3) levels in CML, PV, ET and PMF patients. Our data reported the DIDO 1, 2 and 3 differential expressions in Myeloproliferative Neoplasms.


Assuntos
Proteínas de Ligação a DNA/análise , Variação Genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Transtornos Mieloproliferativos/patologia , Adulto , Idoso , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Adulto Jovem
11.
Sci Rep ; 5: 7691, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25573673

RESUMO

Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Interferon gama/metabolismo , Linfócitos T/metabolismo , Animais , Apoptose , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Ovalbumina/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Vaccinia virus/imunologia
12.
MAbs ; 6(4): 1000-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24870448

RESUMO

Tumor expression of certain chemokine receptors is associated with resistance to apoptosis, migration, invasiveness and metastasis. Because CCR9 chemokine receptor expression is very restricted in healthy tissue, whereas it is present in tumors of distinct origins including leukemias, melanomas, prostate and ovary carcinomas, it can be considered a suitable candidate for target-directed therapy. Here, we report the generation and characterization of 91R, a mouse anti-human CCR9 IgG2b monoclonal antibody that recognizes an epitope within the CCR9 N-terminal domain. This antibody inhibits the growth of subcutaneous xenografts from human acute T lymphoblastic leukemia MOLT-4 cells in immunodeficient Rag2(-/-) mice. Tumor size in 91R-treated mice was reduced by 85% compared with isotype-matched antibody-treated controls. Tumor reduction in 91R-treated mice was concomitant with an increase in the apoptotic cell fraction and tumor necrotic areas, as well as a decrease in the fraction of proliferating cells and in tumor vascularization. In the presence of complement or murine natural killer cells, 91R promoted in vitro lysis of MOLT-4 leukemia cells, indicating that this antibody might eliminate tumor cells via complement- and cell-dependent cytotoxicity. The results show the potential of the 91R monoclonal antibody as a therapeutic agent for treatment of CCR9-expressing tumors.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Imunoglobulina G/farmacologia , Leucemia/tratamento farmacológico , Receptores CCR/antagonistas & inibidores , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antineoplásicos/imunologia , Antineoplásicos/imunologia , Células HEK293 , Xenoenxertos , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Leucemia/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transplante de Neoplasias , Estrutura Terciária de Proteína , Receptores CCR/imunologia
13.
Cytometry B Clin Cytom ; 86(1): 32-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166938

RESUMO

BACKGROUND: ZAP-70 upregulation in B chronic lymphocytic leukemia (B-CLL) cells is a recognized marker of poor prognosis in these patients; the biological basis of this differential clinical outcome nonetheless remains unknown. ZAP-70 overexpression is considered a surrogate marker of a B-CLL cell subset. To test whether the differential biological characteristics of these patients also include the T helper population, we studied naïve, non-terminated memory (NTEM), terminated memory (TEM) and central memory (CM) cells, and cytokine expression by CD4 T lymphocytes from ZAP-70(+) and ZAP-70(-) B-CLL patients. METHODS: Expression of CD3, CD8, CD45RA, CD27, and CD28 antigens and intracytoplasmic cytokine production (IFNγ, IL-2, IL-4, IL-10, and TNFα) were assessed simultaneously by nine-color flow-cytometry in peripheral blood lymphocytes from B-CLL patients. B cell ZAP-70 expression in B-CLL cells was also analyzed by flow cytometry. RESULTS: Compared to ZAP-70(-) B-CLL patients, ZAP-70(+) B-CLL patients showed 1) significant reduction in the naïve T helper subset and expansion of NTEM and TEM subsets, 2) a decrease in the percentage of activated CD4 T lymphocytes expressing IFNγ, TNFα, and IL-2, and 3) an increase in the percentage of CD4 T lymphocytes expressing IL-4 or IL-10. CONCLUSIONS: In conclusion, in early stage B-CLL patients, ZAP-70 upregulation is associated with distinct patterns of activation/differentiation stage subset distribution and of cytokine expression in CD4 T lymphocytes.


Assuntos
Antígenos de Neoplasias/biossíntese , Linfócitos T CD4-Positivos/imunologia , Citocinas/biossíntese , Leucemia Linfocítica Crônica de Células B/diagnóstico , Proteína-Tirosina Quinase ZAP-70/biossíntese , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/citologia , Citocinas/imunologia , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Regulação para Cima , Proteína-Tirosina Quinase ZAP-70/imunologia
14.
Proc Natl Acad Sci U S A ; 110(48): E4619-27, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218587

RESUMO

Evidence supports a relationship between the neuroendocrine and the immune systems. Data from mice that overexpress or are deficient in growth hormone (GH) indicate that GH stimulates T and B-cell proliferation and Ig synthesis, and enhances maturation of myeloid progenitor cells. The effect of GH on autoimmune pathologies has nonetheless been little studied. Using a murine model of type 1 diabetes, a T-cell-mediated autoimmune disease characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing ß-cells, we observed that sustained GH expression reduced prodromal disease symptoms and eliminated progression to overt diabetes. The effect involves several GH-mediated mechanisms; GH altered the cytokine environment, triggered anti-inflammatory macrophage (M2) polarization, maintained activity of the suppressor T-cell population, and limited Th17 cell plasticity. In addition, GH reduced apoptosis and/or increased the proliferative rate of ß-cells. These results support a role for GH in immune response regulation and identify a unique target for therapeutic intervention in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Hormônio do Crescimento/farmacologia , Transferência Adotiva , Animais , Citocinas/sangue , Citometria de Fluxo , Imuno-Histoquímica , Células Secretoras de Insulina/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Transgênicos , Sintomas Prodrômicos , Reação em Cadeia da Polimerase em Tempo Real
15.
Breast Cancer Res ; 15(4): R54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826634

RESUMO

INTRODUCTION: Dysregulated NOTCH receptor activity has been implicated in breast cancer but the mechanisms by which NOTCH contributes to transformation are not yet clear, as it has context-dependent effects on the properties of transformed cells. METHODS: We have used various in vitro and in vivo carcinogenic models to analyze the impact of Notch signaling in the onset and progression of breast tumors. RESULTS: We found that ectopic expression of the Notch1 intracellular domain (N1ICD) in MCF-7 breast adenocarcinoma cell line caused reduction and delocalization of E-CADHERIN levels and increased migratory and invasive abilities. Notch inhibition in the invasive breast cancer cell line MDA-MB-231 resulted in increased E-CADHERIN expression and a parallel reduction in their invasive capacity. The growth of subcutaneous xenografts produced with MCF-7 cells was boosted after N1ICD induction, in a cell autonomous manner. In vivo Notch1 activation in the mammary gland using the MMTV-Cre driver caused the formation of papillary tumors that showed increased Hes1 and Hey1 expression and delocalized E-cadherin staining. CONCLUSIONS: These results confirm NOTCH1 as a signal triggering epithelial-mesenchymal transition in epithelial cancer cells, which may have implications in tumor dissemination, metastasis and proliferation in vivo. The identification of specific factors interacting with NOTCH signaling could thus be relevant to fully understanding the role of NOTCH in breast neoplasia.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Receptores Notch/metabolismo , Animais , Neoplasias da Mama/genética , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Domínios e Motivos de Interação entre Proteínas/genética , Receptor Notch1/química , Receptor Notch1/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/química , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral
16.
Cell Rep ; 4(1): 148-58, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23831028

RESUMO

Death Inducer Obliterator 3 (Dido3) is implicated in the maintenance of stem cell genomic stability and tumorigenesis. Here, we show that Dido3 regulates the expression of stemness genes in embryonic stem cells through its plant homeodomain (PHD) finger. Binding of Dido3 PHD to histone H3K4me3 is disrupted by threonine phosphorylation that triggers Dido3 translocation from chromatin to the mitotic spindle. The crystal structure of Dido3 PHD in complex with H3K4me3 reveals an atypical aromatic-cage-like binding site that contains a histidine residue. Biochemical, structural, and mutational analyses of the binding mechanism identified the determinants of specificity and affinity and explained the inability of homologous PHF3 to bind H3K4me3. Together, our findings reveal a link between the transcriptional control in embryonic development and regulation of cell division.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/química , Mitose , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Histonas/química , Histonas/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Terciária de Proteína , Fuso Acromático/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-23897740

RESUMO

BACKGROUND: ZAP-70 upregulation in B chronic lymphocytic leukemia (B-CLL) cells is a recognized marker of poor prognosis in these patients; the biological basis of this differential clinical outcome nonetheless remains unknown. ZAP-70 overexpression is considered a surrogate marker of a B-CLL cell subset. To test whether the differential biological characteristics of these patients also include the T helper population, we studied naïve, non-terminated memory (NTEM), terminated memory (TEM) and central memory (CM) cells and cytokine expression by CD4 T lymphocytes from ZAP-70+ and ZAP-70- B-CLL patients. METHODS: Expression of CD3, CD8, CD45RA, CD27, and CD28 antigens and intracytoplasmic cytokine production (IFNγ, IL-2, IL-4, IL-10 and TNFα) were assessed simultaneously by nine-color flow-cytometry in peripheral blood lymphocytes from B-CLL patients. B cell ZAP-70 expression in B-CLL cells was also analyzed by flow cytometry. RESULTS: Compared to ZAP-70- B-CLL patients, ZAP-70+ B-CLL patients showed 1) significant reduction in the naïve T helper subset and expansion of NTEM and TEM subsets, 2) a decrease in the percentage of activated CD4 T lymphocytes expressing IFNγ, TNFα and IL-2, and 3) an increase in the percentage of CD4 T lymphocytes expressing IL-4 or IL-10. CONCLUSIONS: In conclusion, in early stage B-CLL patients, ZAP-70 upregulation is associated with distinct patterns of activation/differentiation stage subset distribution and of cytokine expression in CD4 T lymphocytes. © 2013 Clinical Cytometry Society.

18.
Oncoimmunology ; 1(2): 195-200, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22720241

RESUMO

The discovery of a stem cell population in human neoplasias has given a new impulse to the study of the origins of cancer. The tissue compartment in which transformation first occurs likely comprises stem cells, since these cells need to consolidate the short-term and long-term requisites of tissue renewal. Because of their unique role, stem cells have a combination of characteristics that makes them susceptible to genetic damage, transformation, and tumor initiation. One type of genetic damage in particular, chromosomal instability, might affect the stem cell compartment, because it induces an ongoing cycle of DNA damage and alters cellular programming. Here, we will discuss some of the recently described links between SC, chromosomal instability, and carcinogenesis, and outline some of the consequences for oncoimmunology.

19.
Carcinogenesis ; 32(6): 796-803, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478459

RESUMO

The majority of sporadic carcinomas suffer from a kind of genetic instability in which chromosome number changes occur together with segmental defects. This means that changes involving intact chromosomes accompany breakage-induced alterations. Whereas the causes of aneuploidy are described in detail, the origins of chromosome breakage in sporadic carcinomas remain disputed. The three main pathways of chromosomal instability (CIN) proposed until now (random breakage, telomere fusion and centromere fission) are largely based on animal models and in vitro experiments, and recent studies revealed several discrepancies between animal models and human cancer. Here, we discuss how the experimental systems translate to human carcinomas and compare the theoretical breakage products to data from patient material and cancer cell lines. The majority of chromosomal defects in human carcinomas comprises pericentromeric breaks that are captured by healthy telomeres, and only a minor proportion of chromosome fusions can be attributed to telomere erosion or random breakage. Centromere fission, not telomere erosion, is therefore the most probably trigger of CIN and early carcinogenesis. Similar centromere-telomere fusions might drive a subset of congenital defects and evolutionary chromosome changes.


Assuntos
Centrômero/genética , Instabilidade Cromossômica , Neoplasias/genética , Neoplasias/patologia , Telômero/genética , Humanos
20.
Cell Cycle ; 9(12): 2275-80, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20519949

RESUMO

Genetic instability is a hallmark of cancer. Most tumors show complex patterns of translocations, amplifications, and deletions, which have occupied scientists for decades. A specific problem arises in carcinomas with a genetic defect termed chromosomal instability; these solid tumors undergo gains and losses of entire chromosomes, as well as segmental defects caused by chromosome breaks. To date, the apparent inconsistency between intact and broken chromosomes has precluded identification of an underlying mechanism. The recent identification of centromeric breaks alongside aneuploidy in cells with spindle defects indicates that a single mechanism could account for all genetic alterations characteristic of chromosomal instability. Since a poorly controlled spindle can cause merotelic attachments, kinetochore distortion, and subsequent chromosome breakage, spindle defects can generate the sticky ends necessary to start a breakage-fusion-bridge cycle. The characteristic breakpoint of spindle-generated damage, adjacent to the centromere, also explains the losses and gains of whole chromosome arms, which are especially prominent in low-grade tumors. The recent data indicate that spindle defects are an early event in tumor formation, and an important initiator of carcinogenesis.


Assuntos
Aneuploidia , Instabilidade Cromossômica , Quebra Cromossômica , Animais , Centrômero/genética , Segregação de Cromossomos , Dano ao DNA/genética , Proteínas de Ligação a DNA , Camundongos , Instabilidade de Microssatélites , Microtúbulos/genética , Neoplasias/genética , Fuso Acromático/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA