Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2781: 163-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502452

RESUMO

The immunofluorescence technique has been used to identify pluripotent markers in the human amniotic epithelial cells (hAEC). hAEC belonging to human fetal membranes, specificamently to amnion layer, and are arising by epiblast, this sugest that the hAEC have characteristics of epiblast cells, in other words, characteristcs of pluripotent stem cells. Here we describe obtaining human amnion tissue and identifying pluripotent markers by immunofluorescence.


Assuntos
Âmnio , Células-Tronco Pluripotentes , Humanos , Imunofluorescência , Camadas Germinativas , Células Epiteliais
2.
Biol Sex Differ ; 14(1): 77, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919790

RESUMO

BACKGROUND: The prairie vole (Microtus ochrogaster) is a socially monogamous rodent that establishes an enduring pair bond after cohabitation, with (6 h) or without (24 h) mating. Previously, we reported that social interaction and mating increased cell proliferation and differentiation to neuronal fate in neurogenic niches in male voles. We hypothesized that neurogenesis may be a neural plasticity mechanism involved in mating-induced pair bond formation. Here, we evaluated the differentiation potential of neural progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of both female and male adult voles as a function of sociosexual experience. Animals were assigned to one of the following groups: (1) control (Co), sexually naive female and male voles that had no contact with another vole of the opposite sex; (2) social exposure (SE), males and females exposed to olfactory, auditory, and visual stimuli from a vole of the opposite sex, but without physical contact; and (3) social cohabitation with mating (SCM), male and female voles copulating to induce pair bonding formation. Subsequently, the NPCs were isolated from the SVZ, maintained, and supplemented with growth factors to form neurospheres in vitro. RESULTS: Notably, we detected in SE and SCM voles, a higher proliferation of neurosphere-derived Nestin + cells, as well as an increase in mature neurons (MAP2 +) and a decrease in glial (GFAP +) differentiated cells with some sex differences. These data suggest that when voles are exposed to sociosexual experiences that induce pair bonding, undifferentiated cells of the SVZ acquire a commitment to a neuronal lineage, and the determined potential of the neurosphere is conserved despite adaptations under in vitro conditions. Finally, we repeated the culture to obtain neurospheres under treatments with different hormones and factors (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone); the ability of SVZ-isolated cells to generate neurospheres and differentiate in vitro into neurons or glial lineages in response to hormones or factors is also dependent on sex and sociosexual context. CONCLUSION: Social interactions that promote pair bonding in voles change the properties of cells isolated from the SVZ. Thus, SE or SCM induces a bias in the differentiation potential in both sexes, while SE is sufficient to promote proliferation in SVZ-isolated cells from male brains. In females, proliferation increases when mating is performed. The next question is whether the rise in proliferation and neurogenesis of cells from the SVZ are plastic processes essential for establishing, enhancing, maintaining, or accelerating pair bond formation. Highlights 1. Sociosexual experiences that promote pair bonding (social exposure and social cohabitation with mating) induce changes in the properties of neural stem/progenitor cells isolated from the SVZ in adult prairie voles. 2. Social interactions lead to increased proliferation and induce a bias in the differentiation potential of SVZ-isolated cells in both male and female voles. 3. The differentiation potential of SVZ-isolated cells is conserved under in vitro conditions, suggesting a commitment to a neuronal lineage under a sociosexual context. 4. Hormonal and growth factors treatments (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone) affect the generation and differentiation of neurospheres, with dependencies on sex and sociosexual context. 5. Proliferation and neurogenesis in the SVZ may play a crucial role in establishing, enhancing, maintaining, or accelerating pair bond formation.


In this study, researchers evaluated whether social interactions and copulation induce changes in the proliferation and differentiation of neural progenitor cells in adult male and female voles using an in vitro neurosphere formation assay. The following groups were assigned: control animals without any exposure to another vole outside their litter, another group with social exposure consisting of sensory exposure to a vole of the opposite sex and a third group with social cohabitation and copulation. Forty eight hours after social interactions, cells were isolated from the neurogenic niche subventricular zone (SVZ) and cultured to assess their self-renewal and proliferation abilities to form neurospheres. The results showed in the social interaction groups, a greater number and growth of neurospheres in both males and females. Differentiation capacity was assessed by immunodetection of MAP2 and GFAP to identify neurons or glia, respectively, arise from neurospheres, with an increase in neuronal fate in groups with social interaction. In the second part of the study, the researchers analyzed the effect of different hormone and growth factor treatments and found that the response in both proliferation and differentiation potential may vary depending on the sociosexual context or sex. This study suggests that social interactions leading to pair bond formation alter the properties of SVZ cells, whereby proliferation and neurogenesis may have an impact on the establishment and maintenance of pair bonding.


Assuntos
Células-Tronco Neurais , Caracteres Sexuais , Animais , Feminino , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ocitocina/metabolismo , Pradaria , Prolactina/metabolismo , Progesterona , Neurônios/metabolismo , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Arvicolinae/metabolismo , Proliferação de Células , Estradiol/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Stem Cell Res ; 34: 101364, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611019

RESUMO

Although investigation with human embryonic stem cells (HESC) is not decreasing, the derivation of new lines has been diminished. The preeminence of only a few HESC lines in research is accompanied by lack of universal applicability of results as well as by genetic under-representation. We previously reported the derivation of one line with male karyotype from Mexican population. Here, we derived one HESC line (Amicqui-2) with female karyotype from poor-quality embryos. These line comply the pluripotent requirements (normal karyotype, detection of pluripotency-associated markers, mycoplasma test and teratoma formation) and could be a valuable model for studying diseases specific to under-represented population.


Assuntos
Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias Humanas/citologia , Animais , Linhagem Celular , Feminino , Humanos , México , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA