Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597954

RESUMO

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Macrófagos , Inflamação , RNA Viral , Pulmão
2.
PLoS Pathog ; 15(1): e1007560, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682165

RESUMO

Bacterial lung infections, particularly with methicillin-resistant Staphylococcus aureus (MRSA), increase mortality following influenza infection, but the mechanisms remain unclear. Here we show that expression of TLR9, a microbial DNA sensor, is increased in murine lung macrophages, dendritic cells, CD8+ T cells and epithelial cells post-influenza infection. TLR9-/- mice did not show differences in handling influenza nor MRSA infection alone. However, TLR9-/- mice have improved survival and bacterial clearance in the lung post-influenza and MRSA dual infection, with no difference in viral load during dual infection. We demonstrate that TLR9 is upregulated on macrophages even when they are not themselves infected, suggesting that TLR9 upregulation is related to soluble mediators. We rule out a role for elevations in interferon-γ (IFNγ) in mediating the beneficial MRSA clearance in TLR9-/- mice. While macrophages from WT and TLR9-/- mice show similar phagocytosis and bacterial killing to MRSA alone, following influenza infection, there is a marked upregulation of scavenger receptor A and MRSA phagocytosis as well as inducible nitric oxide synthase (Inos) and improved bacterial killing that is specific to TLR9-deficient cells. Bone marrow transplant chimera experiments and in vitro experiments using TLR9 antagonists suggest TLR9 expression on non-hematopoietic cells, rather than the macrophages themselves, is important for regulating myeloid cell function. Interestingly, improved bacterial clearance post-dual infection was restricted to MRSA, as there was no difference in the clearance of Streptococcus pneumoniae. Taken together these data show a surprising inhibitory role for TLR9 signaling in mediating clearance of MRSA that manifests following influenza infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Humanos , Influenza Humana/imunologia , Pulmão/imunologia , Macrófagos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Fagocitose , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Receptor Toll-Like 9/genética
3.
Am J Respir Crit Care Med ; 193(2): 186-97, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26417909

RESUMO

RATIONALE: Autologous and allogeneic hematopoietic stem cell transplant (HSCT) patients are susceptible to pulmonary infections, including bacterial pathogens, even after hematopoietic reconstitution. We previously reported that murine bone marrow transplant (BMT) neutrophils overexpress cyclooxygenase-2, overproduce prostaglandin E2 (PGE2), and exhibit defective intracellular bacterial killing. Neutrophil extracellular traps (NETs) are DNA structures that capture and kill extracellular bacteria and other pathogens. OBJECTIVES: To determine whether NETosis was defective after transplant and if so, whether this was regulated by PGE2 signaling. METHODS: Neutrophils isolated from mice and humans (both control and HSCT subjects) were analyzed for NETosis in response to various stimuli in the presence or absence of PGE2 signaling modifiers. MEASUREMENTS AND MAIN RESULTS: NETs were visualized by immunofluorescence or quantified by Sytox Green fluorescence. Treatment of BMT or HSCT neutrophils with phorbol 12-myristate 13-acetate or rapamycin resulted in reduced NET formation relative to control cells. NET formation after BMT was rescued both in vitro and in vivo with cyclooxygenase inhibitors. Additionally, the EP2 receptor antagonist (PF-04418948) or the EP4 antagonist (AE3-208) restored NET formation in neutrophils isolated from BMT mice or HSCT patients. Exogenous PGE2 treatment limited NETosis of neutrophils collected from normal human volunteers and naive mice in an exchange protein activated by cAMP- and protein kinase A-dependent manner. CONCLUSIONS: Our results suggest blockade of the PGE2-EP2 or EP4 signaling pathway restores NETosis after transplantation. Furthermore, these data provide the first description of a physiologic inhibitor of NETosis.


Assuntos
Dinoprostona/imunologia , Armadilhas Extracelulares/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adulto , Idoso , Animais , Dinoprostona/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA