Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000474

RESUMO

Marfan syndrome (MFS) is a rare congenital disorder of the connective tissue, leading to thoracic aortic aneurysms (TAA) and dissection, among other complications. Currently, the most efficient strategy to prevent life-threatening dissection is preventive surgery. Periodic imaging applying complex techniques is required to monitor TAA progression and to guide the timing of surgical intervention. Thus, there is an acute demand for non-invasive biomarkers for diagnosis and prognosis, as well as for innovative therapeutic targets of MFS. Unraveling the intricate pathomolecular mechanisms underlying the syndrome is vital to address these needs. High-throughput platforms are particularly well-suited for this purpose, as they enable the integration of different datasets, such as transcriptomic and epigenetic profiles. In this narrative review, we summarize relevant studies investigating changes in both the coding and non-coding transcriptome and epigenome in MFS-induced TAA. The collective findings highlight the implicated pathways, such as TGF-ß signaling, extracellular matrix structure, inflammation, and mitochondrial dysfunction. Potential candidates as biomarkers, such as miR-200c, as well as therapeutic targets emerged, like Tfam, associated with mitochondrial respiration, or miR-632, stimulating endothelial-to-mesenchymal transition. While these discoveries are promising, rigorous and extensive validation in large patient cohorts is indispensable to confirm their clinical relevance and therapeutic potential.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , Transcriptoma , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Humanos , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/etiologia , Biomarcadores , Animais , Dissecção Aórtica/genética , Dissecção Aórtica/etiologia , Dissecção Aórtica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Mol Ther Nucleic Acids ; 35(1): 102085, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38192612

RESUMO

RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.

4.
Cells ; 11(22)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428974

RESUMO

Redox imbalance of the endothelial cells (ECs) plays a causative role in a variety of cardiovascular diseases. In order to better understand the molecular mechanisms of the endothelial response to oxidative stress, the involvement of circular RNAs (circRNAs) was investigated. CircRNAs are RNA species generated by a "back-splicing" event, which is the covalent linking of the 3'- and 5'-ends of exons. Bioinformatics analysis of the transcriptomic landscape of human ECs exposed to H2O2 allowed us to identify a subset of highly expressed circRNAs compared to their linear RNA counterparts, suggesting a potential biological relevance. Specifically, circular Ankyrin Repeat Domain 12 (circANKRD12), derived from the junction of exon 2 and exon 8 of the ANKRD12 gene (hsa_circ_0000826), was significantly induced in H2O2-treated ECs. Conversely, the linear RNA isoform of ANKRD12 was not modulated. An increased circular-to-linear ratio of ANKRD12 was also observed in cultured ECs exposed to hypoxia and in skeletal muscle biopsies of patients affected by critical limb ischemia (CLI), two conditions associated with redox imbalance and oxidative stress. The functional relevance of circANKRD12 was shown by the inhibition of EC formation of capillary-like structures upon silencing of the circular but not of the linear isoform of ANKRD12. Bioinformatics analysis of the circANKRD12-miRNA-mRNA regulatory network in H2O2-treated ECs identified the enrichment of the p53 and Foxo signaling pathways, both crucial in the cellular response to redox imbalance. In keeping with the antiproliferative action of the p53 pathway, circANKRD12 silencing inhibited EC proliferation. In conclusion, this study indicates circANKRD12 as an important player in ECs exposed to oxidative stress.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Nucleares/metabolismo
5.
Sci Transl Med ; 13(623): eabi7964, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878823

RESUMO

Endoreplication, duplication of the nuclear genome without cell division, occurs in disease to drive morphologic growth, cell fate, and function. Despite its criticality, the metabolic underpinnings of disease-induced endoreplication and its link to morphologic growth are unknown. Heart disease is characterized by endoreplication preceding cardiac hypertrophy. We identify ATP synthase as a central control node and determinant of cardiac endoreplication and hypertrophy by rechanneling free mitochondrial ADP to methylenetetrahydrofolate dehydrogenase 1 L (MTHFD1L), a mitochondrial localized rate-limiting enzyme of formate and de novo nucleotide biosynthesis. Concomitant activation of the adenosine monophosphate­activated protein kinase (AMPK)­retinoblastoma protein (Rb)-E2F axis co-opts metabolic products of MTHFD1L function to support DNA endoreplication and pathologic growth. Gain- and loss-of-function studies in genetic and surgical mouse heart disease models and correlation in individuals confirm direct coupling of deregulated energetics with endoreplication and pathologic overgrowth. Together, we identify cardiometabolic endoreplication as a hitherto unknown mechanism dictating pathologic growth progression in the failing myocardium.


Assuntos
Endorreduplicação , Cardiopatias , Animais , Ciclo Celular , Divisão Celular , Replicação do DNA , Camundongos
6.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200325

RESUMO

The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).


Assuntos
Envelhecimento/genética , COVID-19/genética , COVID-19/fisiopatologia , Ilhas de CpG , Encurtamento do Telômero , Telômero/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/sangue , Biomarcadores , COVID-19/complicações , COVID-19/etiologia , Metilação de DNA , Dipeptidil Peptidase 4/sangue , Epigenômica , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sobreviventes , Síndrome de COVID-19 Pós-Aguda
7.
Cell Death Dis ; 12(5): 435, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934122

RESUMO

Hypoxia-induced miR-210 is a crucial component of the tissue response to ischemia, stimulating angiogenesis and improving tissue regeneration. Previous analysis of miR-210 impact on the transcriptome in a mouse model of hindlimb ischemia showed that miR-210 regulated not only vascular regeneration functions, but also inflammation. To investigate this event, doxycycline-inducible miR-210 transgenic mice (Tg-210) and anti-miR-210 LNA-oligonucleotides were used. It was found that global miR-210 expression decreased inflammatory cells density and macrophages accumulation in the ischemic tissue. To dissect the underpinning cell mechanisms, Tg-210 mice were used in bone marrow (BM) transplantation experiments and chimeric mice underwent hindlimb ischemia. MiR-210 overexpression in the ischemic tissue was sufficient to increase capillary density and tissue repair, and to reduce inflammation in the presence of Wt-BM infiltrating cells. Conversely, when Tg-210-BM cells migrated in a Wt ischemic tissue, dysfunctional angiogenesis, inflammation, and impaired tissue repair, accompanied by fibrosis were observed. The fibrotic regions were positive for α-SMA, Vimentin, and Collagen V fibrotic markers and for phospho-Smad3, highlighting the activation of TGF-ß1 pathway. Identification of Tg-210 cells by in situ hybridization showed that BM-derived cells contributed directly to fibrotic areas, where macrophages co-expressing fibrotic markers were observed. Cell cultures of Tg-210 BM-derived macrophages exhibited a pro-fibrotic phenotype and were enriched with myofibroblast-like cells, which expressed canonical fibrosis markers. Interestingly, inhibitors of TGF-ß type-1-receptor completely abrogated this pro-fibrotic phenotype. In conclusion, a context-dependent regulation by miR-210 of the inflammatory response was identified. miR-210 expression in infiltrating macrophages is associated to improved angiogenesis and tissue repair when the ischemic recipient tissue also expresses high levels of miR-210. Conversely, when infiltrating an ischemic tissue with mismatched miR-210 levels, macrophages expressing high miR-210 levels display a pro-fibrotic phenotype, leading to impaired tissue repair, fibrosis, and dysfunctional angiogenesis.


Assuntos
Fibrose/patologia , Membro Posterior/irrigação sanguínea , Inflamação/metabolismo , Isquemia/patologia , MicroRNAs/metabolismo , Doença Aguda , Animais , Transplante de Medula Óssea , Fibrose/genética , Fibrose/metabolismo , Isquemia/genética , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
8.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962944

RESUMO

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


Assuntos
MicroRNAs , Sepse , Animais , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Sepse/genética , Sepse/metabolismo
9.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121118

RESUMO

The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non-senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.


Assuntos
Antineoplásicos/uso terapêutico , Doença Crônica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Senescência Celular , Doença Crônica/mortalidade , Ensaios Clínicos como Assunto , Saúde Global , Humanos , Neoplasias/mortalidade , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664454

RESUMO

Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.


Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , RNA não Traduzido/genética , Animais , Biomarcadores/metabolismo , Humanos , Caracteres Sexuais
11.
J Dermatol Sci ; 98(3): 186-194, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32402513

RESUMO

BACKGROUND: Clinical skin manifestations are common in diabetes; however, molecular mechanisms underlying such defects are largely unknown. Several findings indicate a role for microRNAs (miRNAs) in skin homeostasis. OBJECTIVE: To investigate whether miRNA expression is altered in diabetic skin. METHODS: Type 1 and 2 mouse models of diabetes were used. MiRNA profiling was performed on RNA extracted from the skin of type 1 diabetic mice and non-diabetic controls. Expression levels of pri-miRNAs and of miRNA-biogenesis genes were also analyzed. Biogenesis gene expression analysis was performed in human dermal fibroblasts cultured in hyperglycemic, hypoxic or oxidative stress conditions. RESULTS: Several miRNAs were differentially expressed in diabetic skin with a general down-modulation as compared to controls. Bioinformatics analysis of signature-miRNA target genes showed the enrichment in pathways involved in skin homeostasis, such as TGF-ß and Wnt. MiRNA alteration in diabetic skin associated with reduced expression levels of DROSHA, DGCR8, XPO5, DICER1, AGO2, both as mRNA and protein. Reduced biogenesis gene expression did not correlate with accumulation of pri-miRNAs, which displayed differences in expression levels similar to those found for their mature miRNAs. Experiments with cultured fibroblasts showed that hypoxia and oxidative stress induced the down-regulation of miRNA-biogenesis genes in this skin cell type. CONCLUSION: A general down-regulation of differentially expressed miRNAs was found in diabetic skin. This alteration is part of and is dependent from a wider transcriptional defect also affecting the expression of pri-miRNAs and of genes responsible for miRNA biogenesis. Such an alteration is likely contributing to diabetic skin manifestations.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Hiperglicemia/complicações , MicroRNAs/biossíntese , Dermatopatias/patologia , Animais , Biópsia , Hipóxia Celular/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Regulação para Baixo , Fibroblastos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Transdução de Sinais/genética , Pele/citologia , Pele/patologia , Dermatopatias/sangue , Dermatopatias/etiologia
12.
Front Physiol ; 10: 369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191327

RESUMO

Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.

13.
FASEB J ; 33(3): 4107-4123, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30526058

RESUMO

The epigenetic enzyme p300/CBP-associated factor (PCAF) belongs to the GCN5-related N-acetyltransferase (GNAT) family together with GCN5. Although its transcriptional and post-translational function is well characterized, little is known about its properties as regulator of cell metabolism. Here, we report the mitochondrial localization of PCAF conferred by an 85 aa mitochondrial targeting sequence (MTS) at the N-terminal region of the protein. In mitochondria, one of the PCAF targets is the isocitrate dehydrogenase 2 (IDH2) acetylated at lysine 180. This PCAF-regulated post-translational modification might reduce IDH2 affinity for isocitrate as a result of a conformational shift involving predictively the tyrosine at position 179. Site-directed mutagenesis and functional studies indicate that PCAF regulates IDH2, acting at dual level during myoblast differentiation: at a transcriptional level together with MyoD, and at a post-translational level by direct modification of lysine acetylation in mitochondria. The latter event determines a decrease in IDH2 function with negative consequences on muscle fiber formation in C2C12 cells. Indeed, a MTS-deprived PCAF does not localize into mitochondria, remains enriched into the nucleus, and contributes to a significant increase of muscle-specific gene expression enhancing muscle differentiation. The role of PCAF in mitochondria is a novel finding shedding light on metabolic processes relevant to early muscle precursor differentiation.-Savoia, M., Cencioni, C., Mori, M., Atlante, S., Zaccagnini, G., Devanna, P., Di Marcotullio, L., Botta, B., Martelli, F., Zeiher, A. M., Pontecorvi, A., Farsetti, A., Spallotta, F., Gaetano, C. P300/CBP-associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation.


Assuntos
Diferenciação Celular/genética , Proteína p300 Associada a E1A/genética , Isocitrato Desidrogenase/genética , Transcrição Gênica/genética , Acetilação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Lisina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/fisiologia , Processamento de Proteína Pós-Traducional/genética , Ativação Transcricional/genética
14.
Mol Ther ; 26(7): 1694-1705, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29908843

RESUMO

Therapies based on circulating proangiogenic cells (PACs) have shown promise in ischemic disease models but require further optimization to reach the bedside. Ischemia-associated hypoxia robustly increases microRNA-210 (miR-210) expression in several cell types, including endothelial cells (ECs). In ECs, miR-210 represses EphrinA3 (EFNA3), inducing proangiogenic responses. This study provides new mechanistic evidences for a role of miR-210 in PACs. PACs were obtained from either adult peripheral blood or cord blood. miR-210 expression was modulated with either an inhibitory complementary oligonucleotide (anti-miR-210) or a miRNA mimic (pre-miR-210). Scramble and absence of transfection served as controls. As expected, hypoxia increased miR-210 in PACs. In vivo, migration toward and adhesion to the ischemic endothelium facilitate the proangiogenic actions of transplanted PACs. In vitro, PAC migration toward SDF-1α/CXCL12 was impaired by anti-miR-210 and enhanced by pre-miR-210. Moreover, pre-miR-210 increased PAC adhesion to ECs and supported angiogenic responses in co-cultured ECs. These responses were not associated with changes in extracellular miR-210 and were abrogated by lentivirus-mediated EFNA3 overexpression. Finally, ex-vivo pre-miR-210 transfection predisposed PACs to induce post-ischemic therapeutic neovascularization and blood flow recovery in an immunodeficient mouse limb ischemia model. In conclusion, miR-210 modulates PAC functions and improves their therapeutic potential in limb ischemia.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/fisiologia , Membro Posterior/citologia , Isquemia/genética , Isquemia/terapia , MicroRNAs/genética , Neovascularização Fisiológica/fisiologia , Adulto , Animais , Linhagem Celular , Quimiocina CXCL12/genética , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Transfecção/métodos
15.
Nat Commun ; 9(1): 1281, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599503

RESUMO

Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.


Assuntos
Histona Desacetilase 2/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Miocárdio/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miocárdio/metabolismo
16.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158345

RESUMO

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
17.
Aging (Albany NY) ; 9(12): 2559-2586, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29242407

RESUMO

Oxidative stress plays a fundamental role in many conditions. Specifically, redox imbalance inhibits endothelial cell (EC) growth, inducing cell death and senescence. We used global transcriptome profiling to investigate the involvement of noncoding-RNAs in these phenotypes. By RNA-sequencing, transcriptome changes were analyzed in human ECs exposed to H2O2, highlighting a pivotal role of p53-signaling. Bioinformatic analysis and validation in p53-silenced ECs, identified several p53-targets among both mRNAs and long noncoding-RNAs (lncRNAs), including MALAT1 and NEAT1. Among microRNAs (miRNAs), miR-192-5p was the most induced by H2O2 treatment, in a p53-dependent manner. Down-modulated mRNA-targets of miR-192-5p were involved in cell cycle, DNA repair and stress response. Accordingly, miR-192-5p overexpression significantly decreased EC proliferation, inducing cell death. A central role of the p53-pathway was also confirmed by the analysis of differential exon usage: Upon H2O2 treatment, the expression of p53-dependent 5'-isoforms of MDM2 and PVT1 increased selectively. The transcriptomic alterations identified in H2O2-treated ECs were also observed in other physiological and pathological conditions where redox control plays a fundamental role, such as ECs undergoing replicative senescence, skeletal muscles of critical limb-ischemia patients and the peripheral-blood mononuclear cells of long-living individuals. Collectively, these findings indicate a prominent role of noncoding-RNAs in oxidative stress response.


Assuntos
Regulação da Expressão Gênica/fisiologia , Estresse Oxidativo/fisiologia , RNA não Traduzido/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Oxidantes/farmacologia , Oxirredução , Transcriptoma
18.
Aging (Albany NY) ; 9(2): 370-380, 2017 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-28121621

RESUMO

The study of the health status in long-living individuals (LLIs) may help identifying health-span and life-span determinants. BPI-Fold-Containing-Family-B-Member-4 (BPIFB4) protein is higher in healthy vs. non-healthy (frail) LLIs serum and its longevity-associated variant forced expression improves cardiovascular outcomes in ischemia mice models. Thus, we tested the association of BPIFB4 and ischemia-responding HIF-1α pathway components (i.e. CXCR4, AK3, ALDO-C, ADM, VEGF-A, GLUT-1 and miR-210) with human life-span and health-span by analyzing mRNA expression in circulating mononuclear cells (MNCs) of LLIs (N=14 healthy; N=31 frail) and young controls (N=63).ALDO-C, ADM, VEGF-A and GLUT-1 significantly decreased and miR-210 increased in LLIs vs. CONTROLS: Only VEGF-A and GLUT-1 showed further significant reduction in healthy-LLIs vs. frail-LLIs comparison. While BPIFB4 and CXCR4 were similar between LLIs and controls, BPIFB4 was significantly higher and CXCR4 lower in healthy- versus frail-LLIs. On a new set of LLIs (N=7 healthy and N=5 non-healthy) we assessed a potentially correlated function with low CXCR4 expression. Healthy donors' MNCs showed efficient migration ability toward CXCR4 ligand SDF-1α/CXCL12 and high percentage of migrated CXCR4pos cells which inversely correlated with CXCR4 RNA expression. In conclusion, BPIFB4 and CXCR4 expression classify LLIs health status that correlates with maintained MNCs migration.


Assuntos
Envelhecimento/genética , Longevidade/genética , Fosfoproteínas/genética , Receptores CXCR4/genética , Adrenomedulina/genética , Idoso de 80 Anos ou mais , Movimento Celular/fisiologia , Feminino , Transportador de Glucose Tipo 1/genética , Nível de Saúde , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Itália , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Fator A de Crescimento do Endotélio Vascular/genética
19.
Pharmacol Ther ; 171: 43-55, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27742569

RESUMO

Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin.


Assuntos
Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Regeneração/fisiologia , Animais , Epigênese Genética , Fibroblastos/citologia , Coração/fisiologia , Humanos , Pericitos/citologia , Fenótipo , Fatores de Risco
20.
Antioxid Redox Signal ; 27(6): 328-344, 2017 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27960536

RESUMO

AIMS: Reactive oxygen species (ROS) play a pivotal role in different pathologic conditions, including ischemia, diabetes, and aging. We previously showed that ROS enhance miR-200c expression, causing endothelial cell (EC) apoptosis and senescence. Herein, we dissect the interaction among miR-200c and three strictly related proteins that modulate EC function and ROS production: sirtuin 1 (SIRT1), endothelial nitric oxide synthase (eNOS), and forkhead box O1 (FOXO1). Moreover, the role of miR-200c on ROS modulation was also investigated. RESULTS: We demonstrated that miR-200c directly targets SIRT1, eNOS, and FOXO1; via this mechanism, miR-200c decreased NO and increased the acetylation of SIRT1 targets, that is, FOXO1 and p53. FOXO1 acetylation inhibited its transcriptional activity on target genes, that is, SIRT1 and the ROS scavengers, catalase and manganese superoxide dismutase. In keeping, miR-200c increased ROS production and induced p66Shc protein phosphorylation in Ser-36; this mechanism upregulated ROS and inhibited FOXO1 transcription, reinforcing this molecular circuitry. These in vitro results were validated in three in vivo models of oxidative stress, that is, human skin fibroblasts from old donors, femoral arteries from old mice, and a murine model of hindlimb ischemia. In all cases, miR-200c was higher versus control and its targets, that is, SIRT1, eNOS, and FOXO1, were downmodulated. In the mouse hindlimb ischemia model, anti-miR-200c treatment rescued these targets and improved limb perfusion. Innovation and Conclusion: miR-200c disrupts SIRT1/FOXO1/eNOS regulatory loop. This event promotes ROS production and decreases NO, contributing to endothelial dysfunction under conditions of increased oxidative stress such as aging and ischemia. Antioxid. Redox Signal. 27, 328-344.


Assuntos
Proteína Forkhead Box O1/metabolismo , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Sirtuína 1/genética , Acetilação , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA