Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Biol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305139

RESUMO

The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Through CRISPR screening, we identified host genes required for infection by each variant. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed Food and Drug Administration-approved drugs. All the drugs were highly active against all the variants tested, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early virus replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanised mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.

2.
Brief Funct Genomics ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801430

RESUMO

Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.

3.
Nat Cell Biol ; 25(5): 643-657, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106060

RESUMO

During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Camundongos , Animais , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Camadas Germinativas/metabolismo , Células Germinativas/metabolismo , Receptores de Estrogênio/metabolismo
4.
Biol Open ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504370

RESUMO

We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células-Tronco Pluripotentes , Proteínas Repressoras , Fator de Transcrição STAT3 , Camundongos , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais
5.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165418

RESUMO

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mecanotransdução Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Junções Célula-Matriz/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Junções Célula-Matriz/patologia , Dinaminas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Fatores de Alongamento de Peptídeos/metabolismo , Microambiente Tumoral
6.
Commun Biol ; 5(1): 146, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177756

RESUMO

Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their expression levels. Defects in genomic imprinting have been observed in several neurodevelopmental disorders, in a wide range of tumours and in induced pluripotent stem cells (iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing allowing the determination of whether imprinted or X-linked genes are aberrantly expressed from both alleles, although standardised analysis methods are still missing. We have developed a tool, named BrewerIX, that provides comprehensive information about the allelic expression of a large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require programming skills, runs on a standard personal computer, and can analyze both bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing data. BrewerIX confirmed previous observations regarding the bi-allelic expression of some imprinted genes in naive pluripotent cells and extended them to preimplantation embryos. BrewerIX also identified misregulated imprinted genes in breast cancer cells and in human organoids and identified genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the study of genomic imprinting and XCI during development and reprogramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of use to non-computational biologists, its implementation could become standard practice during sample assessment, thus raising the robustness and reproducibility of future studies.


Assuntos
Alelos , Genes Ligados ao Cromossomo X/genética , Software , Transcriptoma/genética , Animais , Neoplasias da Mama , Regulação da Expressão Gênica , Humanos , Camundongos , Análise de Célula Única
7.
Nat Genet ; 53(2): 215-229, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526924

RESUMO

Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.


Assuntos
Blastocisto/fisiologia , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Histonas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Fator Inibidor de Leucemia/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , DNA Metiltransferase 3B
8.
Front Cell Dev Biol ; 7: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143763

RESUMO

Human induced Pluripotent Stem Cells (hiPSCs) have the capacity to generate a wide range of somatic cells, thus representing an ideal tool for regenerative medicine. Patient-derived hiPSCs are also used for in vitro disease modeling and drug screenings. Several studies focused on the identification of DNA mutations generated, or selected, during the derivation of hiPSCs, some of which are known to drive cancer formation. Avoiding such stable genomic aberrations is paramount for successful use of hiPSCs, but it is equally important to ensure that their epigenetic information is correct, given the critical role of epigenetics in transcriptional regulation and its involvement in a plethora of pathologic conditions. In this review we will focus on genomic imprinting, a prototypical epigenetic mechanism whereby a gene is expressed in a parent-of-origin specific manner, thanks to the differential methylation of specific DNA sequences. Conventional hiPSCs are thought to be in a pluripotent state primed for differentiation. They display a hypermethylated genome with an unexpected loss of DNA methylation at imprinted loci. Several groups recently reported the generation of hiPSCs in a more primitive developmental stage, called naïve pluripotency. Naïve hiPSCs share several features with early human embryos, such as a global genome hypomethylation, which is also accompanied by a widespread loss of DNA methylation at imprinted loci. Given that loss of imprinting has been observed in genetic developmental disorders as well as in a wide range of cancers, it is fundamental to make sure that hiPSCs do not show such epigenetic aberrations. We will discuss what specific imprinted genes, associated with human pathologies, have been found commonly misregulated in hiPSCs and suggest strategies to effectively detect and avoid such undesirable epigenetic abnormalities.

9.
Nat Cell Biol ; 21(2): 275-286, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30598530

RESUMO

Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1), SOX2, KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening.


Assuntos
Diferenciação Celular , Camadas Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica/métodos , Medicina Regenerativa/métodos , Animais , Células Cultivadas , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/genética
10.
EMBO J ; 35(6): 618-34, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903601

RESUMO

Transcription factor Stat3 directs self-renewal of pluripotent mouse embryonic stem (ES) cells downstream of the cytokine leukemia inhibitory factor (LIF). Stat3 upregulates pivotal transcription factors in the ES cell gene regulatory network to sustain naïve identity. Stat3 also contributes to the rapid proliferation of ES cells. Here, we show that Stat3 increases the expression of mitochondrial-encoded transcripts and enhances oxidative metabolism. Chromatin immunoprecipitation reveals that Stat3 binds to the mitochondrial genome, consistent with direct transcriptional regulation. An engineered form of Stat3 that localizes predominantly to mitochondria is sufficient to support enhanced proliferation of ES cells, but not to maintain their undifferentiated phenotype. Furthermore, during reprogramming from primed to naïve states of pluripotency, Stat3 similarly upregulates mitochondrial transcripts and facilitates metabolic resetting. These findings suggest that the potent stimulation of naïve pluripotency by LIF/Stat3 is attributable to parallel and synergistic induction of both mitochondrial respiration and nuclear transcription factors.


Assuntos
Respiração Celular , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/fisiologia , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Fator Inibidor de Leucemia/metabolismo , Camundongos , Mitocôndrias/genética
11.
Annu Rev Cell Dev Biol ; 30: 647-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288119

RESUMO

Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Divisão Celular Assimétrica , Blastocisto/citologia , Técnicas de Cultura de Células , Linhagem da Célula , Células Cultivadas , Reprogramação Celular , Técnicas de Cocultura , Meios de Cultura , Meios de Cultura Livres de Soro , Células-Tronco de Carcinoma Embrionário/citologia , Células-Tronco Embrionárias/fisiologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Camadas Germinativas/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator Inibidor de Leucemia/fisiologia , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/farmacologia , Fatores de Transcrição/fisiologia
12.
Stem Cell Reports ; 1(1): 66-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24052943

RESUMO

Mammalian primordial germ cells (PGCs) are unipotent progenitors of the gametes. Nonetheless, they can give rise directly to pluripotent stem cells in vitro or during teratocarcinogenesis. This conversion is inconsistent, however, and has been difficult to study. Here, we delineate requirements for efficient resetting of pluripotency in culture. We demonstrate that in defined conditions, routinely 20% of PGCs become EG cells. Conversion can occur from the earliest specified PGCs. The entire process can be tracked from single cells. It is driven by leukemia inhibitory factor (LIF) and the downstream transcription factor STAT3. In contrast, LIF signaling is not required during germ cell ontogeny. We surmise that ectopic LIF/STAT3 stimulation reconstructs latent pluripotency and self-renewal. Notably, STAT3 targets are significantly upregulated in germ cell tumors, suggesting that dysregulation of this pathway may underlie teratocarcinogenesis. These findings demonstrate that EG cell formation is a robust experimental system for exploring mechanisms involved in reprogramming and cancer.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Células-Tronco Embrionárias/metabolismo , Células Germinativas/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
13.
EMBO J ; 32(19): 2561-74, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23942233

RESUMO

Self-renewal of pluripotent mouse embryonic stem (ES) cells is sustained by the cytokine leukaemia inhibitory factor (LIF) acting through the transcription factor Stat3. Several targets of Stat3 have previously been identified, most notably the reprogramming factor Klf4. However, such factors are neither required nor sufficient for the potent effect of LIF. We took advantage of Stat3 null ES cells to confirm that Stat3 mediates the self-renewal response to LIF. Through comparative transcriptome analysis intersected with genome location data, we arrived at a set of candidate transcription factor effectors. Among these, Tfcp2l1 (also known as Crtr-1) was most abundant. Constitutive expression of Tfcp2l1 at levels similar to those induced by LIF effectively substituted for LIF or Stat3 in sustaining clonal self-renewal and pluripotency. Conversely, knockdown of Tfcp2l1 profoundly compromised responsiveness to LIF. We further found that Tfcp2l1 is both necessary and sufficient to direct molecular reprogramming of post-implantation epiblast stem cells to naïve pluripotency. These results establish Tfcp2l1 as the principal bridge between LIF/Stat3 input and the transcription factor core of naïve pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Pluripotentes/citologia , Fator de Transcrição STAT3/genética
14.
Cell Stem Cell ; 11(4): 491-504, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23040478

RESUMO

Inhibition of glycogen synthase kinase-3 (Gsk3) supports mouse embryonic stem cells (ESCs) by modulating Tcf3, but the critical targets downstream of Tcf3 are unclear. We analyzed the intersection between genome localization and transcriptome data sets to identify genes repressed by Tcf3. Among these, manipulations of Esrrb gave distinctive phenotypes in functional assays. Knockdown and knockout eliminated response to Gsk3 inhibition, causing extinction of pluripotency markers and loss of colony forming capability. Conversely, forced expression phenocopied Gsk3 inhibition or Tcf3 deletion by suppressing differentiation and sustaining self-renewal. Thus the nuclear receptor Esrrb is necessary and sufficient to mediate self-renewal downstream of Gsk3 inhibition. Leukaemia inhibitory factor (LIF) regulates ESCs through Stat3, independently of Gsk3 inhibition. Consistent with parallel operation, ESCs in LIF accommodated Esrrb deletion and remained pluripotent. These findings highlight a key role for Esrrb in regulating the naive pluripotent state and illustrate compensation among the core pluripotency factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sobrevivência Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Células-Tronco Pluripotentes/fisiologia , Receptores de Estrogênio/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma , Fator Inibidor de Leucemia/metabolismo , Camundongos , RNA Interferente Pequeno/genética , Receptores de Estrogênio/genética
15.
Cell ; 141(7): 1195-207, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603000

RESUMO

Although specific microRNAs (miRNAs) can be upregulated in cancer, global miRNA downregulation is a common trait of human malignancies. The mechanisms of this phenomenon and the advantages it affords remain poorly understood. Here we identify a microRNA family, miR-103/107, that attenuates miRNA biosynthesis by targeting Dicer, a key component of the miRNA processing machinery. In human breast cancer, high levels of miR-103/107 are associated with metastasis and poor outcome. Functionally, miR-103/107 confer migratory capacities in vitro and empower metastatic dissemination of otherwise nonaggressive cells in vivo. Inhibition of miR-103/107 opposes migration and metastasis of malignant cells. At the cellular level, a key event fostered by miR-103/107 is induction of epithelial-to-mesenchymal transition (EMT), attained by downregulating miR-200 levels. These findings suggest a new pathway by which Dicer inhibition drifts epithelial cancer toward a less-differentiated, mesenchymal fate to foster metastasis.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Metástase Neoplásica/genética , Ribonuclease III/genética , Animais , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Feminino , Humanos , Camundongos , Prognóstico
16.
Nat Rev Mol Cell Biol ; 11(4): 252-63, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20216554

RESUMO

MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/fisiologia , Transdução de Sinais , Animais , Humanos
17.
Cell ; 136(1): 123-35, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19135894

RESUMO

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Assuntos
Proteína Smad4/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação , Xenopus
18.
Science ; 315(5813): 840-3, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17234915

RESUMO

During development and tissue homeostasis, cells must integrate different signals. We investigated how cell behavior is controlled by the combined activity of transforming growth factor-beta (TGF-beta) and receptor tyrosine kinase (RTK) signaling, whose integration mechanism is unknown. We find that RTK/Ras/MAPK (mitogen-activated protein kinase) activity induces p53 N-terminal phosphorylation, enabling the interaction of p53 with the TGF-beta-activated Smads. This mechanism confines mesoderm specification in Xenopus embryos and promotes TGF-beta cytostasis in human cells. These data indicate a mechanism to allow extracellular cues to specify the TGF-beta gene-expression program.


Assuntos
Proliferação de Células , Embrião não Mamífero/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/metabolismo , Substituição de Aminoácidos , Animais , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Linhagem Celular Tumoral , Desenvolvimento Embrionário , Indução Embrionária , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/metabolismo , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Smad/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA