Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Genet ; 14: 1235337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028628

RESUMO

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

2.
PLoS One ; 15(5): e0230815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379818

RESUMO

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.


Assuntos
Glicemia/análise , Fumar Cigarros/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Genótipo , Adulto , Idoso , População Negra/genética , Fumar Cigarros/etnologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Estudos de Viabilidade , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , População Branca/genética
3.
Nat Genet ; 51(10): 1459-1474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578528

RESUMO

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.


Assuntos
Doenças Cardiovasculares/sangue , Marcadores Genéticos , Gota/sangue , Doenças Metabólicas/sangue , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Ácido Úrico/sangue , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudos de Coortes , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gota/epidemiologia , Gota/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Proteínas de Neoplasias/genética , Especificidade de Órgãos
4.
Hum Mol Genet ; 28(15): 2615-2633, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127295

RESUMO

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.


Assuntos
Pressão Arterial/genética , Interação Gene-Ambiente , Hipertensão/genética , Polimorfismo Genético , Grupos Raciais/genética , Fumar/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antiporters/genética , Pressão Sanguínea/genética , Caspase 9/genética , Etnicidade/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/etiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Receptores de Vasopressinas/genética , Transportadores de Sulfato/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
5.
Nat Genet ; 51(3): 481-493, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804560

RESUMO

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.


Assuntos
Predisposição Genética para Doença/genética , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fumar/genética
6.
Blood ; 133(9): 967-977, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30642921

RESUMO

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating FVII activity and/or levels have been discovered to date. We conducted a meta-analysis of 9 genome-wide association studies of plasma FVII levels (7 FVII activity and 2 FVII antigen) among 27 495 participants of European and African ancestry. Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our primary analysis included the 7 studies that measured FVII activity, and a secondary analysis included all 9 studies. We provided functional genomic validation for newly identified significant loci by silencing candidate genes in a human liver cell line (HuH7) using small-interfering RNA and then measuring F7 messenger RNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, ischemic stroke (IS), and venous thromboembolism. We identified 2 novel (REEP3 and JAZF1-AS1) and 6 known loci associated with FVII activity, explaining 19.0% of the phenotypic variance. Adding FVII antigen data to the meta-analysis did not result in the discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, whereas silencing JAZF1 downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive causal effect on the risk of IS. Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII activity appears to contribute to the etiology of IS in the general population.


Assuntos
Isquemia Encefálica/etiologia , Fator VII/genética , Estudo de Associação Genômica Ampla , Proteínas de Membrana Transportadoras/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas Correpressoras , Estudos de Coortes , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Proteínas de Ligação a DNA , Fator VII/metabolismo , Feminino , Seguimentos , Loci Gênicos , Predisposição Genética para Doença , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Fenótipo , Prognóstico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patologia
7.
Am J Hum Genet ; 102(3): 375-400, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29455858

RESUMO

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10-8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10-8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).


Assuntos
Pressão Sanguínea/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Grupos Raciais/genética , Fumar/genética , Estudos de Coortes , Diástole/genética , Epistasia Genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Sístole/genética
8.
Wellcome Open Res ; 2: 85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062915

RESUMO

This article provides the first detailed demonstration of the research value of the Electronic Health Record (EHR) linked to research data in Generation Scotland Scottish Family Health Study (GS:SFHS) participants, together with how to access this data. The structured, coded variables in the routine biochemistry, prescribing and morbidity records, in particular, represent highly valuable phenotypic data for a genomics research resource. Access to a wealth of other specialized datasets, including cancer, mental health and maternity inpatient information, is also possible through the same straightforward and transparent application process. The EHR linked dataset is a key component of GS:SFHS, a biobank conceived in 1999 for the purpose of studying the genetics of health areas of current and projected public health importance. Over 24,000 adults were recruited from 2006 to 2011, with broad and enduring written informed consent for biomedical research. Consent was obtained from 23,603 participants for GS:SFHS study data to be linked to their Scottish National Health Service (NHS) records, using their Community Health Index number. This identifying number is used for NHS Scotland procedures (registrations, attendances, samples, prescribing and investigations) and allows healthcare records for individuals to be linked across time and location. Here, we describe the NHS EHR dataset on the sub-cohort of 20,032 GS:SFHS participants with consent and mechanism for record linkage plus extensive genetic data. Together with existing study phenotypes, including family history and environmental exposures, such as smoking, the EHR is a rich resource of real world data that can be used in research to characterise the health trajectory of participants, available at low cost and a high degree of timeliness, matched to DNA, urine and serum samples and genome-wide genetic information.

9.
Genet Epidemiol ; 40(5): 404-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27230302

RESUMO

Studying gene-environment (G × E) interactions is important, as they extend our knowledge of the genetic architecture of complex traits and may help to identify novel variants not detected via analysis of main effects alone. The main statistical framework for studying G × E interactions uses a single regression model that includes both the genetic main and G × E interaction effects (the "joint" framework). The alternative "stratified" framework combines results from genetic main-effect analyses carried out separately within the exposed and unexposed groups. Although there have been several investigations using theory and simulation, an empirical comparison of the two frameworks is lacking. Here, we compare the two frameworks using results from genome-wide association studies of systolic blood pressure for 3.2 million low frequency and 6.5 million common variants across 20 cohorts of European ancestry, comprising 79,731 individuals. Our cohorts have sample sizes ranging from 456 to 22,983 and include both family-based and population-based samples. In cohort-specific analyses, the two frameworks provided similar inference for population-based cohorts. The agreement was reduced for family-based cohorts. In meta-analyses, agreement between the two frameworks was less than that observed in cohort-specific analyses, despite the increased sample size. In meta-analyses, agreement depended on (1) the minor allele frequency, (2) inclusion of family-based cohorts in meta-analysis, and (3) filtering scheme. The stratified framework appears to approximate the joint framework well only for common variants in population-based cohorts. We conclude that the joint framework is the preferred approach and should be used to control false positives when dealing with low-frequency variants and/or family-based cohorts.


Assuntos
Pressão Sanguínea/genética , Interação Gene-Ambiente , Fumar , Estudos de Coortes , Bases de Dados Factuais , Família , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Fenótipo
10.
Genet Epidemiol ; 40(3): 244-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27027517

RESUMO

For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.


Assuntos
Estudos de Associação Genética , Haplótipos/genética , Metanálise como Assunto , Envelhecimento , Proteínas Correpressoras , Estudos de Coortes , Proteínas de Ligação a DNA , Jejum/metabolismo , Feminino , Variação Genética/genética , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Coração , Humanos , Análise dos Mínimos Quadrados , Masculino , Modelos Genéticos , Epidemiologia Molecular , Análise Multivariada , Proteínas de Neoplasias/genética , Fenótipo , Reprodutibilidade dos Testes , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA