Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2365-2368, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085979

RESUMO

Temporal interference (TI) stimulation is a technique in which two high frequency sinusoidal electric fields, oscillating at a slightly different frequency are sent into the brain. The goal is to achieve stimulation at the place where both fields interfere. This study uses a simplified version of the Hodgkin - Huxley model to analyse the different parameters of the TI-waveform and how the neuron reacts to this waveform. In this manner, the underlying mechanism of the reaction of the neuron to a TI -signal is investigated. Clinical relevance- This study shows the importance of the parameter choice of the temporal interference waveform and provides insights into the underlying mechanism of the neuronal response to a beating sine for the application of temporal interference stimulation.


Assuntos
Encéfalo , Neurônios , Neurônios/fisiologia
2.
IEEE Trans Biomed Circuits Syst ; 14(6): 1218-1229, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170783

RESUMO

This paper presents a millimeter-scale crystal-less wireless transceiver for volume-constrained insertable pills. Operating in the 402-405 MHz medical implant communication service (MICS) band, the phase-tracking receiver-based over-the-air carrier recovery has a ±160 ppm coverage. A fully integrated adaptive antenna impedance matching solution is proposed to calibrate the antenna impedance variation inside the body. A tunable matching network (TMN) with single inductor performs impedance matching for both transmitter (TX) and receiver (RX) and TX/RX mode switching. To dynamically calibrate the antenna impedance variation over different locations and diet conditions, a loop-back power detector using self-mixing is adopted, which expands the power contour up to 4.8 VSWR. The transceiver is implemented in a 40-nm CMOS technology, occupying 2 mm2 die area. The transceiver chip and a miniature antenna are integrated in a 3.5 × 15 mm2 area prototype wireless module. It has a receiver sensitivity of -90 dBm at 200 kbps data rate and delivers up to - 25 dBm EIRP in the wireless measurement with a liquid phantom.


Assuntos
Eletrônica Médica/instrumentação , Gastroscopia/instrumentação , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Humanos , Modelos Biológicos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador/instrumentação , Estômago/diagnóstico por imagem
3.
J Neural Eng ; 17(5): 056010, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33043898

RESUMO

OBJECTIVE: To design a computationally efficient model for ultrasonic neuromodulation (UNMOD) of morphologically realistic multi-compartmental neurons based on intramembrane cavitation. APPROACH: A Spatially Extended Neuronal Intramembrane Cavitation model that accurately predicts observed fast Charge Oscillations (SECONIC) is designed. A regular spiking cortical Hodgkin-Huxley type nanoscale neuron model of the bilayer sonophore and surrounding proteins is used. The accuracy and computational efficiency of SECONIC is compared with the Neuronal Intramembrane Cavitation Excitation (NICE) and multiScale Optimized model of Neuronal Intramembrane Cavitation (SONIC). MAIN RESULTS: Membrane charge redistribution between different compartments should be taken into account via fourier series analysis in an accurate multi-compartmental UNMOD-model. Approximating charge and voltage traces with the harmonic term and first two overtones results in reasonable goodness-of-fit, except for high ultrasonic pressure (adjusted R-squared ≥0.61). Taking into account the first eight overtones results in a very good fourier series fit (adjusted R-squared ≥0.96) up to 600 kPa. Next, the dependency of effective voltage and rate parameters on charge oscillations is investigated. The two-tone SECONIC-model is one to two orders of magnitude faster than the NICE-model and demonstrates accurate results for ultrasonic pressure up to 100 kPa. SIGNIFICANCE: Up to now, the underlying mechanism of UNMOD is not well understood. Here, the extension of the bilayer sonophore model to spatially extended neurons via the design of a multi-compartmental UNMOD-model, will result in more detailed predictions that can be used to validate or falsify this tentative mechanism. Furthermore, a multi-compartmental model for UNMOD is required for neural engineering studies that couple finite difference time domain simulations with neuronal models. Here, we propose the SECONIC-model, extending the SONIC-model by taking into account charge redistribution between compartments.


Assuntos
Encéfalo , Modelos Neurológicos , Ultrassom , Transferência de Energia , Bicamadas Lipídicas , Neurônios , Técnicas Estereotáxicas
4.
Radiat Prot Dosimetry ; 190(4): 400-411, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32909042

RESUMO

The goal of this paper is to experimentally assess the field enhancement and hotspot size of radio frequency electromagnetic fields created by the Maximum Ratio Combining (MRC) precoding scheme using lab measurements at 3.5, 5.5 and 11 GHz. MRC is an adaptive precoding scheme used by Massive Multiple Input Multiple Output systems, one of the enabling techniques of the fifth generation of telecommunications (5G). A virtual antenna array was used to compare MRC with two passive precoding schemes: the Random Phase Model (RPM) and the Centerline Beam Model (CBM). The field enhancement going from CBM to MRC was largest in obstructed line of sight (OLOS), ranging from 1.9 to 7.4 dB. The field enhancement going from RPM to MRC was about 9.5 dB across frequency bands in both line of sight (LOS) and OLOS. The hotspot size, quantified by the full width at half maximum (FWHM), ranged from 0.5 wavelengths to one wavelength.


Assuntos
Campos Eletromagnéticos , Ondas de Rádio
5.
Environ Res ; 183: 109196, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032814

RESUMO

This paper describes radiofrequency (RF) electromagnetic field (EMF) measurements in the vicinity of single and banks of advanced metering infrastructure (AMI) smart meters. The measurements were performed in a meter testing and distribution facility as well as in-situ at five urban locations. The measurements consisted of gauging the RF environment at the place of assessment, evaluating the worst-case electric-field levels at various positions around the assessed AMI meter configuration (spatial assessment), which ranged from a single meter to a bank of 81 m, and calculating the duty cycle of the system, i.e. the fraction of time that the AMI meters were actually transmitting (12-h temporal assessment). Both in-situ and in the meter facility, the maximum field levels at 0.3 m from the meter configurations were 10-13 V/m for a single meter and 18-38 V/m for meter banks with 20-81 m. Furthermore, 6-min average duty cycles of 0.01% (1 m) up to 13% (81-m bank) were observed. Next, two general statistical models (one for a single meter and one for a meter bank) were constructed to predict the electric-field strength as a function of distance to any configuration of the assessed AMI meters. For all scenarios, the measured exposure levels (at a minimum distance of 0.3 m) were well below the maximum permissible exposure limits issued by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the U.S. Federal Communications Commission (FCC), and the Institute of Electrical and Electronics Engineers (IEEE). Indeed, the worst-case time-average exposure level at a distance of 0.3 m from an AMI installation was 5.39% of the FCC/IEEE and 9.43% of the ICNIRP reference levels.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Ondas de Rádio , Eletricidade , Monitoramento Ambiental , Modelos Estatísticos , Radiação Ionizante
6.
Sci Rep ; 10(1): 461, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949179

RESUMO

Radio-frequency electromagnetic fields (RF-EMFs) can be absorbed in all living organisms, including Western Honey Bees (Apis Mellifera). This is an ecologically and economically important global insect species that is continuously exposed to environmental RF-EMFs. This exposure is studied numerically and experimentally in this manuscript. To this aim, numerical simulations using honey bee models, obtained using micro-CT scanning, were implemented to determine RF absorbed power as a function of frequency in the 0.6 to 120 GHz range. Five different models of honey bees were obtained and simulated: two workers, a drone, a larva, and a queen. The simulations were combined with in-situ measurements of environmental RF-EMF exposure near beehives in Belgium in order to estimate realistic exposure and absorbed power values for honey bees. Our analysis shows that a relatively small shift of 10% of environmental incident power density from frequencies below 3 GHz to higher frequencies will lead to a relative increase in absorbed power of a factor higher than 3.


Assuntos
Abelhas/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Exposição à Radiação/efeitos adversos , Ondas de Rádio/efeitos adversos , Absorção de Radiação , Animais , Modelos Teóricos
7.
Artigo em Inglês | MEDLINE | ID: mdl-31366064

RESUMO

Recent data on erosive tooth wear (ETW) in Belgium have associated a vocational/technical type of education with ETW risk. Since the role of schools is essential to the promotion of healthy diets, this study aimed to investigate school food policies (SFP) related to soft drink and fruit juice consumption and to detect differences among schools in Flanders, Belgium (BE-F). An online questionnaire related to the control of acidic beverages and promotion of healthy drinking habits was sent to all Flemish secondary schools. For analysis, schools (n = 275) were grouped by type of education (vocational secondary education (VSE) and general secondary education (GSE)), and by socioeconomic status. Multiple factor analyses (MFA) were performed to identify schools with a similar SFP profile. Additionally, descriptive analyses were performed to determine other associations. Overall, 44% of schools in BE-F claimed to have written SFP related to the consumption of soft drinks. SFP expressly prohibiting or limiting acidic beverages were significantly more frequent in GSE schools (p < 0.05), where a higher economic status was present. This study shows that a considerable group of schools in BE-F have no or incomplete rules concerning acidic beverage consumption. Such rules differ between types of education, with VSE schools reporting less control regarding the consumption of drinks.


Assuntos
Bebidas Gaseificadas , Sucos de Frutas e Vegetais , Política Nutricional , Instituições Acadêmicas/organização & administração , Adolescente , Bélgica , Ingestão de Líquidos , Feminino , Humanos , Masculino , Classe Social , Fatores Socioeconômicos , Inquéritos e Questionários
8.
Environ Res ; 175: 1-10, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31096087

RESUMO

When making phone calls, cellphone and smartphone users are exposed to radio-frequency (RF) electromagnetic fields (EMFs) and sound pressure simultaneously. Speech intelligibility during mobile phone calls is related to the sound pressure level of speech relative to potential background sounds and also to the RF-EMF exposure, since the signal quality is correlated with the RF-EMF strength. Additionally, speech intelligibility, sound pressure level, and exposure to RF-EMFs are dependent on how the call is made (on speaker, held at the ear, or with headsets). The relationship between speech intelligibility, sound exposure, and exposure to RF-EMFs is determined in this study. To this aim, the transmitted RF-EMF power was recorded during phone calls made by 53 subjects in three different, controlled exposure scenarios: calling with the phone at the ear, calling in speaker-mode, and calling with a headset. This emitted power is directly proportional to the exposure to RF EMFs and is translated into specific absorption rate using numerical simulations. Simultaneously, sound pressure levels have been recorded and speech intelligibility has been assessed during each phone call. The results show that exposure to RF-EMFs, quantified as the specific absorption in the head, will be reduced when speaker-mode or a headset is used, in comparison to calling next to the ear. Additionally, personal exposure to sound pressure is also found to be highest in the condition where the phone is held next to the ear. On the other hand, speech perception is found to be the best when calling with a phone next to the ear in comparison to the other studied conditions, when background noise is present.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Ondas de Rádio , Inteligibilidade da Fala , Telefone Celular/instrumentação , Telefone Celular/normas , Humanos , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle
9.
Phys Rev Lett ; 122(10): 108101, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932680

RESUMO

Autonomous implantable bioelectronics requires efficient radiating structures for data transfer and wireless powering. The radiation of body-implanted capsules is investigated to obtain the explicit radiation optima for E- and B-coupled sources of arbitrary dimensions and properties. The analysis uses the conservation-of-energy formulation within dispersive homogeneous and stratified canonical body models. The results reveal that the fundamental bounds exceed by far the efficiencies currently obtained by conventional designs. Finally, a practical realization of the optimal source based on a dielectric-loaded cylindrical-patch structure is presented. The radiation efficiency of the structure closely approaches the theoretical bounds and shows a fivefold improvement over existing systems.

10.
Sensors (Basel) ; 19(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781755

RESUMO

A major burden of signal strength-based fingerprinting for indoor positioning is the generation and maintenance of a radio map, also known as a fingerprint database. Model-based radio maps are generated much faster than measurement-based radio maps but are generally not accurate enough. This work proposes a method to automatically construct and optimize a model-based radio map. The method is based on unsupervised learning, where random walks, for which the ground truth locations are unknown, serve as input for the optimization, along with a floor plan and a location tracking algorithm. No measurement campaign or site survey, which are labor-intensive and time-consuming, or inertial sensor measurements, which are often not available and consume additional power, are needed for this approach. Experiments in a large office building, covering over 1100 m², resulted in median accuracies of up to 2.07 m, or a relative improvement of 28.6% with only 15 min of unlabeled training data.

11.
Dentomaxillofac Radiol ; 48(3): 20180138, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30604634

RESUMO

OBJECTIVES:: The main objective of this study was to perform a retrospective reject analysis (or audit) of 79 cone-beam CTs (CBCTs) taken in under-aged patients at the Ghent University hospital over a 2-year timespan. METHODS:: Observer agreement between two oral radiologists and two senior year Master students in Paediatric Dentistry was performed for quality, diagnostic and therapeutic value. The senior year Master Students followed appropriate modules of an online course. Descriptive and comparative statistics were performed. RESULTS:: For the oral radiologists, all intra rater reliabilities were moderate to good (Gwet's AC1 = 0.41-0.75). For the senior students in Paediatric dentistry, these varied highly from fair to very good (Gwet's AC1 = 0.28-0.95). There was a high level of disagreement between oral radiologists and students (Gwet's AC1 = 0.16-0.45) and in-between students concerning observed quality (Gwet's AC1 = 0.29). A total of 16 CBCTs (20%) was rejected, 24 images (30%) were acceptable and 39 images (50%) had an excellent quality. 50 CBCTs were perceived to have a diagnostic advantage. 13 of the images would have no influence on the therapy, according to the oral radiologists. A significant correlation was found between unacceptable quality, absence of perceived diagnostic advantage (p = 0.004, RR = 2.4) and influence on therapy (p < 0.0005, RR = 1.8). A small field of view (FOV) was positively correlated to an excellent quality of the image (p = 0.011, RR = 2.8). CONCLUSIONS:: Image quality did not reach the proposed boundary of 10% according to the European Guidelines on Radiation Protection in Dental Radiology. This is the first published audit on an overall database of under-age children for CBCT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Radiografia Dentária , Radiologia , Adolescente , Artefatos , Criança , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
IEEE Trans Biomed Eng ; 66(4): 1155-1164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30188811

RESUMO

OBJECTIVE: To explore the potential of ultrasonic modulation of plateau-potential generating subthalamic nucleus neurons (STN), by modeling their interaction with continuous and pulsed ultrasonic waves. METHODS: A computational model for ultrasonic stimulation of the STN is created by combining the Otsuka-model with the bilayer sonophore model. The neuronal response to continuous and pulsed ultrasonic waves is computed in parallel for a range of frequencies, duty cycles, pulse repetition frequencies, and intensities. RESULTS: Ultrasonic intensity in continuous-wave stimulation determines the firing pattern of the STN. Three observed spiking modes in order of increasing intensity are low frequency spiking, high frequency spiking with significant spike-frequency and spike-amplitude adaptation, and a silenced mode. Continuous-wave stimulation has little capability to manipulate the saturated spiking rate in the high frequency spiking mode. In contrast, STN firing rates induced by pulsed ultrasound insonication will saturate to the pulse repetition frequency with short latencies, for sufficiently large intensity and repetition frequency. CONCLUSION: Computational results show that the activity of plateau-potential generating STN can be modulated by selection of the stimulus parameters. Low intensities result in repetitive firing, while higher intensities silence the STN. Pulsed ultrasonic stimulation results in a shorter saturation latency and is able to modulate spiking rates. SIGNIFICANCE: Stimulation or suppresion of the STN is important in the treatment of Parkinson's disease, e.g., in deep brain stimulation. This explorative study on ultrasonic modulation of the STN, could be a step in the direction of minimally invasive alternatives to conventional deep brain stimulation.


Assuntos
Estimulação Acústica/métodos , Modelos Neurológicos , Núcleo Subtalâmico , Ondas Ultrassônicas , Simulação por Computador , Humanos , Neurônios/citologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/efeitos da radiação , Terapia por Ultrassom
13.
Sci Rep ; 8(1): 3924, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500425

RESUMO

Insects are continually exposed to Radio-Frequency (RF) electromagnetic fields at different frequencies. The range of frequencies used for wireless telecommunication systems will increase in the near future from below 6 GHz (2 G, 3 G, 4 G, and WiFi) to frequencies up to 120 GHz (5 G). This paper is the first to report the absorbed RF electromagnetic power in four different types of insects as a function of frequency from 2 GHz to 120 GHz. A set of insect models was obtained using novel Micro-CT (computer tomography) imaging. These models were used for the first time in finite-difference time-domain electromagnetic simulations. All insects showed a dependence of the absorbed power on the frequency. All insects showed a general increase in absorbed RF power at and above 6 GHz, in comparison to the absorbed RF power below 6 GHz. Our simulations showed that a shift of 10% of the incident power density to frequencies above 6 GHz would lead to an increase in absorbed power between 3-370%.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Insetos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Insetos/classificação , Insetos/fisiologia
14.
Environ Res ; 162: 81-96, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29289859

RESUMO

The aims of this study were to: i) investigate the repeatability and representativeness of personal radio frequency-electromagnetic fields (RF-EMFs) exposure measurements, across different microenvironments, ii) perform simultaneous evaluations of personal RF-EMF exposures for the whole body and the head, iii) validate the data obtained with a head-worn personal distributed exposimeter (PDE) against those obtained with an on-body worn personal exposimeter (PEM). Data on personal and head RF-EMF exposures were collected by performing measurements across 15 microenvironments in Melbourne, Australia. A body-worn PEM and a head-worn PDE were used for measuring body and head exposures, respectively. The summary statistics obtained for total RF-EMF exposure showed a high representativeness (r2 > 0.66 for two paths in the same area) and a high repeatability over time (r2 > 0.87 for repetitions of the same path). The median head exposure in the 900MHz downlink band ranged between 0.06V/m and 0.31V/m. The results obtained during simultaneous measurements using the two devices showed high correlations (0.42 < r2 < 0.94). The highest mean total RF-EMF exposure was measured in Melbourne's central business district (0.89V/m), whereas the lowest mean total exposure was measured in a suburban residential area (0.05V/m). This study shows that personal RF-EMF microenvironmental measurements in multiple microenvironments have high representativeness and repeatability over time. The personal RF-EMF exposure levels (i.e. body and head exposures) demonstrated moderate to high correlations.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Monitoramento Ambiental , Austrália , Habitação , Ondas de Rádio , Reprodutibilidade dos Testes
15.
Sensors (Basel) ; 18(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346280

RESUMO

A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7-90.8 µW·m - 2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6.


Assuntos
Ondas de Rádio , Bélgica , Calibragem , Campos Eletromagnéticos , Humanos , Monitoramento de Radiação , Incerteza
16.
Radiat Prot Dosimetry ; 176(3): 316-321, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338842

RESUMO

For the first time, a personal exposimeter (PEX) for 60 GHz radiation measurements is presented. The PEX is designed based on numerical simulations and both on-body and on-phantom calibration measurements to determine the antenna aperture and measurement uncertainty of the PEX. The measurement uncertainty of the PEX is quantified in terms of 50 and 95% prediction intervals of its response. A PEX consisting of three nodes (antennas) with VHH (vertical-horizontal-horizontal) polarization results in a 95% prediction interval of 6.6 dB. A 50% prediction interval of 1.3 dB (factor of 1.3) is obtained for measured power densities which is 3.1 dB lower than a single antenna experiment. The uncertainty is 19.7 dB smaller than that of existing commercial exposimeters at lower frequencies (≤6GHz).


Assuntos
Exposição Ambiental/análise , Ondas de Rádio , Radiometria/instrumentação , Calibragem , Desenho de Equipamento , Humanos , Tecnologia sem Fio
17.
Environ Res ; 151: 547-563, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27588949

RESUMO

The purposes of this study were: i) to demonstrate the assessment of personal exposure from various RF-EMF sources across different microenvironments in Australia and Belgium, with two on-body calibrated exposimeters, in contrast to earlier studies which employed single, non-on-body calibrated exposimeters; ii) to systematically evaluate the performance of the exposimeters using (on-body) calibration and cross-talk measurements; and iii) to compare the exposure levels measured for one site in each of several selected microenvironments in the two countries. A human subject took part in an on-body calibration of the exposimeter in an anechoic chamber. The same subject collected data on personal exposures across 38 microenvironments (19 in each country) situated in urban, suburban and rural regions. Median personal RF-EMF exposures were estimated: i) of all microenvironments, and ii) across each microenvironment, in two countries. The exposures were then compared across similar microenvironments in two countries (17 in each country). The three highest median total exposure levels were: city center (4.33V/m), residential outdoor (urban) (0.75V/m), and a park (0.75V/m) [Australia]; and a tram station (1.95V/m), city center (0.95V/m), and a park (0.90V/m) [Belgium]. The exposures across nine microenvironments in Melbourne, Australia were lower than the exposures across corresponding microenvironments in Ghent, Belgium (p<0.05). The personal exposures across urban microenvironments were higher than those for rural or suburban microenvironments. Similarly, the exposure levels across outdoor microenvironments were higher than those for indoor microenvironments.


Assuntos
Campos Eletromagnéticos , Monitoramento Ambiental/instrumentação , Ondas de Rádio , Austrália , Bélgica , Humanos
18.
J Magn Reson Imaging ; 44(5): 1360-1367, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27043243

RESUMO

PURPOSE: To determine exposure to gradient switching fields of adults and children in a magnetic resonance imaging (MRI) scanner by evaluating internal electric fields within realistic models of adult male, adult female, and child inside transverse and longitudinal gradient coils, and to compare these results with compliance guidelines. MATERIALS AND METHODS: Patients inside x-, y-, and z-gradient coils were simulated using anatomically realistic models of adult male, adult female, and child. The induced electric fields were computed for 1 kHz sinusoidal current with a magnitude of 1 A in the gradient coils. Rheobase electric fields were then calculated and compared to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2004 and International Electrotechnical Commission (IEC) 2010 guidelines. The effect of the human body, coil type, and skin conductivity on the induced electric field was also investigated. RESULTS: The internal electric fields are within the first level controlled operating mode of the guidelines and range from 2.7V m-1 to 4.5V m-1 , except for the adult male inside the y-gradient coil (induced field reaches 5.4V m-1 ).The induced electric field is sensitive to the coil type (electric field in the skin of adult male: 4V m-1 , 4.6V m-1 , and 3.8V m-1 for x-, y-, and z-gradient coils, respectively), the human body model (electric field in the skin inside y-gradient coil: 4.6V m-1 , 4.2V m-1 , and 3V m-1 for adult male, adult female, and child, respectively), and the skin conductivity (electric field 2.35-4.29% higher for 0.1S m-1 skin conductivity compared to 0.2S m-1 ). CONCLUSION: The y-gradient coil induced the largest fields in the patients. The highest levels of internal electric fields occurred for the adult male model. J. Magn. Reson. Imaging 2016;44:1360-1367.


Assuntos
Envelhecimento/fisiologia , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Imagem Corporal Total/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doses de Radiação , Proteção Radiológica/métodos , Adulto Jovem
19.
Radiat Prot Dosimetry ; 163(1): 58-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24729592

RESUMO

Two radio-frequency personal exposimeters (PEMs) worn on both hips are calibrated on a subject in an anechoic chamber. The PEMs' response and crosstalk are determined for realistically polarised incident electric fields using this calibration. The 50 % confidence interval of the PEMs' response is reduced (2.6 dB on average) when averaged over both PEMs. A significant crosstalk (up to a ratio of 1.2) is measured, indicating that PEM measurements can be obfuscated by crosstalk. Simultaneous measurements with two PEMs are carried out in Ghent, Belgium. The highest exposure is measured for Global System for Mobile Communication downlink (0.052 mW m(-2) on average), while the lowest exposure is found for Universal Mobile Telecommunications System uplink (0.061 µW m(-2) on average). The authors recommend the use of a combination of multiple PEMs and, considering the multivariate data, to provide the mean vector and the covariance matrix next to the commonly listed univariate summary statistics, in future PEM studies.


Assuntos
Monitoramento de Radiação/instrumentação , Ondas de Rádio/efeitos adversos , Bélgica , Calibragem , Telefone Celular , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental , Sistemas de Informação Geográfica , Humanos , Imagens de Fantasmas , Monitoramento de Radiação/estatística & dados numéricos , Incerteza
20.
Health Phys ; 107(6): 503-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25353235

RESUMO

Characterization of exposure from emerging radio frequency (RF) technologies in areas where children are present is important. Exposure to RF electromagnetic fields (EMF) was assessed in three "sensitive" microenvironments; namely, schools, homes, and public places located in urban environments and compared to exposure in offices. In situ assessment was conducted by performing spatial broadband and accurate narrowband measurements, providing 6-min averaged electric-field strengths. A distinction between internal (transmitters that are located indoors) and external (outdoor sources from broadcasting and telecommunication) sources was made. Ninety-four percent of the broadband measurements were below 1 V m(-1). The average and maximal total electric-field values in schools, homes, and public places were 0.2 and 3.2 V m(-1) (WiFi), 0.1 and 1.1 V m(-1) (telecommunication), and 0.6 and 2.4 V m(-1) (telecommunication), respectively, while for offices, average and maximal exposure were 0.9 and 3.3 V m(-1) (telecommunication), satisfying the ICNIRP reference levels. In the schools considered, the highest maximal and average field values were due to internal signals (WiFi). In the homes, public places, and offices considered, the highest maximal and average field values originated from telecommunication signals. Lowest exposures were obtained in homes. Internal sources contributed on average more indoors (31.2%) than outdoors (2.3%), while the average contributions of external sources (broadcast and telecommunication sources) were higher outdoors (97.7%) than at indoor positions (68.8%). FM, GSM, and UMTS dominate the total downlink exposure in the outdoor measurements. In indoor measurements, FM, GSM, and WiFi dominate the total exposure. The average contribution of the emerging technology LTE was only 0.6%.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental/análise , Monitoramento de Radiação , Ondas de Rádio , Telecomunicações/instrumentação , Carga Corporal (Radioterapia) , Criança , Habitação/estatística & dados numéricos , Humanos , Saúde Pública/estatística & dados numéricos , Doses de Radiação , Instituições Acadêmicas/estatística & dados numéricos , Telecomunicações/estatística & dados numéricos , Local de Trabalho/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA