Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559060

RESUMO

Bruton's tyrosine kinase (BTK) inhibitors are effective for the treatment of chronic lymphocytic leukemia (CLL) due to BTK's role in B cell survival and proliferation. Treatment resistance is most commonly caused by the emergence of the hallmark BTKC481S mutation that inhibits drug binding. In this study, we aimed to investigate whether the presence of additional CLL driver mutations in cancer subclones harboring a BTKC481S mutation accelerates subclone expansion. In addition, we sought to determine whether BTK-mutated subclones exhibit distinct transcriptomic behavior when compared to other cancer subclones. To achieve these goals, we employ our recently published method (Qiao et al. 2024) that combines bulk DNA sequencing and single-cell RNA sequencing (scRNA-seq) data to genotype individual cells for the presence or absence of subclone-defining mutations. While the most common approach for scRNA-seq includes short-read sequencing, transcript coverage is limited due to the vast majority of the reads being concentrated at the priming end of the transcript. Here, we utilized MAS-seq, a long-read scRNAseq technology, to substantially increase transcript coverage across the entire length of the transcripts and expand the set of informative mutations to link cells to cancer subclones in six CLL patients who acquired BTKC481S mutations during BTK inhibitor treatment. We found that BTK-mutated subclones often acquire additional mutations in CLL driver genes, leading to faster subclone proliferation. When examining subclone-specific gene expression, we found that in one patient, BTK-mutated subclones are transcriptionally distinct from the rest of the malignant B cell population with an overexpression of CLL-relevant genes.

2.
Genome Res ; 34(1): 94-105, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38195207

RESUMO

Genetic and gene expression heterogeneity is an essential hallmark of many tumors, allowing the cancer to evolve and to develop resistance to treatment. Currently, the most commonly used data types for studying such heterogeneity are bulk tumor/normal whole-genome or whole-exome sequencing (WGS, WES); and single-cell RNA sequencing (scRNA-seq), respectively. However, tools are currently lacking to link genomic tumor subclonality with transcriptomic heterogeneity by integrating genomic and single-cell transcriptomic data collected from the same tumor. To address this gap, we developed scBayes, a Bayesian probabilistic framework that uses tumor subclonal structure inferred from bulk DNA sequencing data to determine the subclonal identity of cells from single-cell gene expression (scRNA-seq) measurements. Grouping together cells representing the same genetically defined tumor subclones allows comparison of gene expression across different subclones, or investigation of gene expression changes within the same subclone across time (i.e., progression, treatment response, or relapse) or space (i.e., at multiple metastatic sites and organs). We used simulated data sets, in silico synthetic data sets, as well as biological data sets generated from cancer samples to extensively characterize and validate the performance of our method, as well as to show improvements over existing methods. We show the validity and utility of our approach by applying it to published data sets and recapitulating the findings, as well as arriving at novel insights into cancer subclonal expression behavior in our own data sets. We further show that our method is applicable to a wide range of single-cell sequencing technologies including single-cell DNA sequencing as well as Smart-seq and 10x Genomics scRNA-seq protocols.


Assuntos
Neoplasias , Humanos , Sequenciamento do Exoma , Teorema de Bayes , Neoplasias/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
4.
Nat Cancer ; 3(2): 232-250, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35221336

RESUMO

Models that recapitulate the complexity of human tumors are urgently needed to develop more effective cancer therapies. We report a bank of human patient-derived xenografts (PDXs) and matched organoid cultures from tumors that represent the greatest unmet need: endocrine-resistant, treatment-refractory and metastatic breast cancers. We leverage matched PDXs and PDX-derived organoids (PDxO) for drug screening that is feasible and cost-effective with in vivo validation. Moreover, we demonstrate the feasibility of using these models for precision oncology in real time with clinical care in a case of triple-negative breast cancer (TNBC) with early metastatic recurrence. Our results uncovered a Food and Drug Administration (FDA)-approved drug with high efficacy against the models. Treatment with this therapy resulted in a complete response for the individual and a progression-free survival (PFS) period more than three times longer than their previous therapies. This work provides valuable methods and resources for functional precision medicine and drug development for human breast cancer.


Assuntos
Organoides , Neoplasias de Mama Triplo Negativas , Descoberta de Drogas , Xenoenxertos , Humanos , Medicina de Precisão/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Estados Unidos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Genome Med ; 13(1): 170, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711268

RESUMO

BACKGROUND: Metastatic breast cancer is a deadly disease with a low 5-year survival rate. Tracking metastatic spread in living patients is difficult and thus poorly understood. METHODS: Via rapid autopsy, we have collected 30 tumor samples over 3 timepoints and across 8 organs from a triple-negative metastatic breast cancer patient. The large number of sites sampled, together with deep whole-genome sequencing and advanced computational analysis, allowed us to comprehensively reconstruct the tumor's evolution at subclonal resolution. RESULTS: The most unique, previously unreported aspect of the tumor's evolution that we observed in this patient was the presence of "subclone incubators," defined as metastatic sites where substantial tumor evolution occurs before colonization of additional sites and organs by subclones that initially evolved at the incubator site. Overall, we identified four discrete waves of metastatic expansions, each of which resulted in a number of new, genetically similar metastasis sites that also enriched for particular organs (e.g., abdominal vs bone and brain). The lung played a critical role in facilitating metastatic spread in this patient: the lung was the first site of metastatic escape from the primary breast lesion, subclones at this site were likely the source of all four subsequent metastatic waves, and multiple sites in the lung acted as subclone incubators. Finally, functional annotation revealed that many known drivers or metastasis-promoting tumor mutations in this patient were shared by some, but not all metastatic sites, highlighting the need for more comprehensive surveys of a patient's metastases for effective clinical intervention. CONCLUSIONS: Our analysis revealed the presence of substantial tumor evolution at metastatic incubator sites in a patient, with potentially important clinical implications. Our study demonstrated that sampling of a large number of metastatic sites affords unprecedented detail for studying metastatic evolution.


Assuntos
Autopsia , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Metástase Neoplásica , Biópsia , Evolução Molecular , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Filogenia
6.
Genome Med ; 13(1): 46, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771218

RESUMO

BACKGROUND: DNA sequencing has unveiled extensive tumor heterogeneity in several different cancer types, with many exhibiting diverse subclonal populations. Identifying and tracing mutations throughout the expansion and progression of a tumor represents a significant challenge. Furthermore, prioritizing the subset of such mutations most likely to contribute to tumor evolution or that could serve as potential therapeutic targets represents an ongoing problem. RESULTS: Here, we describe OncoGEMINI, a new tool designed for exploring the complex patterns and trajectory of somatic and inherited variation observed in heterogeneous tumors biopsied over the course of treatment. This is accomplished by creating a searchable database of variants that includes tumor sampling time points and allows for filtering methods that reflect specific changes in variant allele frequencies over time. Additionally, by incorporating existing annotations and resources that facilitate the interpretation of cancer mutations (e.g., CIViC, DGIdb), OncoGEMINI enables rapid searches for, and potential identification of, mutations that may be driving subclonal evolution. CONCLUSIONS: By combining relevant genomic annotations alongside specific filtering tools, OncoGEMINI provides powerful and customizable approaches that enable the quick identification of individual tumor variants that meet specified criteria. It can be applied to a wide range of tumor-derived sequence data, but is especially designed for studies with multiple samples, including longitudinal datasets. It is available under an MIT license at github.com/fakedrtom/oncogemini .


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Variação Genética , Software , Biópsia , Bases de Dados Genéticas , Feminino , Humanos , Estudos Longitudinais , Metástase Neoplásica
7.
PLoS One ; 15(2): e0229063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084206

RESUMO

Challenges with distinguishing circulating tumor DNA (ctDNA) from next-generation sequencing (NGS) artifacts limits variant searches to established solid tumor mutations. Here we show early and random PCR errors are a principal source of NGS noise that persist despite duplex molecular barcoding, removal of artifacts due to clonal hematopoiesis of indeterminate potential, and suppression of patterned errors. We also demonstrate sample duplicates are necessary to eliminate the stochastic noise associated with NGS. Integration of sample duplicates into NGS analytics may broaden ctDNA applications by removing NGS-related errors that confound identification of true very low frequency variants during searches for ctDNA without a priori knowledge of specific mutations to target.


Assuntos
DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Código de Barras de DNA Taxonômico , Feminino , Hematopoese/genética , Humanos , Masculino , Pessoa de Meia-Idade
8.
PLoS One ; 13(7): e0197333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044795

RESUMO

Circulating tumor-derived cell-free DNA (ctDNA) enables non-invasive diagnosis, monitoring, and treatment susceptibility testing in human cancers. However, accurate detection of variant alleles, particularly during untargeted searches, remains a principal obstacle to widespread application of cell-free DNA in clinical oncology. In this study, isolation of short cell-free DNA fragments is shown to enrich for tumor variants and improve correction of PCR- and sequencing-associated errors. Subfractions of the mononucleosome of circulating cell-free DNA (ccfDNA) were isolated from patients with melanoma, pancreatic ductal adenocarcinoma, and colorectal adenocarcinoma using a high-throughput-capable automated gel-extraction platform. Using a 128-gene (128 kb) custom next-generation sequencing panel, variant alleles were on average 2-fold enriched in the short fraction (median insert size: ~142 bp) compared to the original ccfDNA sample, while 0.7-fold reduced in the fraction corresponding to the principal peak of the mononucleosome (median insert size: ~167 bp). Size-selected short fractions compared to the original ccfDNA yielded significantly larger family sizes (i.e., PCR duplicates) during in silico consensus sequence interpretation via unique molecular identifiers. Increments in family size were associated with a progressive reduction of PCR and sequencing errors. Although consensus read depth also decreased at larger family sizes, the variant allele frequency in the short ccfDNA fraction remained consistent, while variant detection in the original ccfDNA was commonly lost at family sizes necessary to minimize errors. These collective findings support the automated extraction of short ccfDNA fragments to enrich for ctDNA while concomitantly reducing false positives through in silico error correction.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/sangue , Alelos , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/genética , Sequência Consenso , Fragmentação do DNA , Humanos , Neoplasias/genética , Neoplasias/patologia
10.
Nat Methods ; 15(2): 123-126, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29309061

RESUMO

GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation.


Assuntos
Neoplasias da Mama/genética , Genoma Humano , Genômica/métodos , Ferramenta de Busca/métodos , Análise de Sequência de DNA/métodos , Software , Bases de Dados Genéticas , Feminino , Humanos , Internet
11.
Nat Methods ; 12(10): 966-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26258291

RESUMO

SpeedSeq is an open-source genome analysis platform that accomplishes alignment, variant detection and functional annotation of a 50× human genome in 13 h on a low-cost server and alleviates a bioinformatics bottleneck that typically demands weeks of computation with extensive hands-on expert involvement. SpeedSeq offers performance competitive with or superior to current methods for detecting germline and somatic single-nucleotide variants, structural variants, insertions and deletions, and it includes novel functionality for streamlined interpretation.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Software , Variação Genética , Humanos , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Fluxo de Trabalho
12.
Cancer Inform ; 14(Suppl 1): 37-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25931804

RESUMO

Mobile elements constitute greater than 45% of the human genome as a result of repeated insertion events during human genome evolution. Although most of mobile elements are fixed within the human population, some elements (including ALU, long interspersed elements (LINE) 1 (L1), and SVA) are still actively duplicating and may result in life-threatening human diseases such as cancer, motivating the need for accurate mobile-element insertion (MEI) detection tools. We developed a software package, TANGRAM, for MEI detection in next-generation sequencing data, currently serving as the primary MEI detection tool in the 1000 Genomes Project. TANGRAM takes advantage of valuable mapping information provided by our own MOSAIK mapper, and until recently required MOSAIK mappings as its input. In this study, we report a new feature that enables TANGRAM to be used on alignments generated by any mainstream short-read mapper, making it accessible for many genomic users. To demonstrate its utility for cancer genome analysis, we have applied TANGRAM to the TCGA (The Cancer Genome Atlas) mutation calling benchmark 4 dataset. TANGRAM is fast, accurate, easy to use, and open source on https://github.com/jiantao/Tangram.

13.
Cancer Inform ; 13(Suppl 4): 45-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452688

RESUMO

Mobile elements constitute greater than 45% of the human genome as a result of repeated insertion events during human genome evolution. Although most of mobile elements are fixed within the human population, some elements (including ALU, long interspersed elements (LINE) 1 (L1), and SVA) are still actively duplicating and may result in life-threatening human diseases such as cancer, motivating the need for accurate mobile-element insertion (MEI) detection tools. We developed a software package, TANGRAM, for MEI detection in next-generation sequencing data, currently serving as the primary MEI detection tool in the 1000 Genomes Project. TANGRAM takes advantage of valuable mapping information provided by our own MOSAIK mapper, and until recently required MOSAIK mappings as its input. In this study, we report a new feature that enables TANGRAM to be used on alignments generated by any mainstream short-read mapper, making it accessible for many genomic users. To demonstrate its utility for cancer genome analysis, we have applied TANGRAM to the TCGA (The Cancer Genome Atlas) mutation calling benchmark 4 dataset. TANGRAM is fast, accurate, easy to use, and open source on https://github.com/jiantao/Tangram.

14.
BMC Genomics ; 15: 795, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25228379

RESUMO

BACKGROUND: Mobile elements (MEs) constitute greater than 50% of the human genome as a result of repeated insertion events during human genome evolution. Although most of these elements are now fixed in the population, some MEs, including ALU, L1, SVA and HERV-K elements, are still actively duplicating. Mobile element insertions (MEIs) have been associated with human genetic disorders, including Crohn's disease, hemophilia, and various types of cancer, motivating the need for accurate MEI detection methods. To comprehensively identify and accurately characterize these variants in whole genome next-generation sequencing (NGS) data, a computationally efficient detection and genotyping method is required. Current computational tools are unable to call MEI polymorphisms with sufficiently high sensitivity and specificity, or call individual genotypes with sufficiently high accuracy. RESULTS: Here we report Tangram, a computationally efficient MEI detection program that integrates read-pair (RP) and split-read (SR) mapping signals to detect MEI events. By utilizing SR mapping in its primary detection module, a feature unique to this software, Tangram is able to pinpoint MEI breakpoints with single-nucleotide precision. To understand the role of MEI events in disease, it is essential to produce accurate individual genotypes in clinical samples. Tangram is able to determine sample genotypes with very high accuracy. Using simulations and experimental datasets, we demonstrate that Tangram has superior sensitivity, specificity, breakpoint resolution and genotyping accuracy, when compared to other, recently developed MEI detection methods. CONCLUSIONS: Tangram serves as the primary MEI detection tool in the 1000 Genomes Project, and is implemented as a highly portable, memory-efficient, easy-to-use C++ computer program, built under an open-source development model.


Assuntos
Algoritmos , Elementos Alu , Cromossomos Humanos Par 22/genética , Biologia Computacional/métodos , Genoma Humano , Genótipo , Humanos , Modelos Genéticos , Sensibilidade e Especificidade
15.
Genome Biol ; 15(8): 443, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25160522

RESUMO

Many tumors are composed of genetically divergent cell subpopulations. We report SubcloneSeeker, a package capable of exhaustive identification of subclone structures and evolutionary histories with bulk somatic variant allele frequency measurements from tumor biopsies. We present a statistical framework to elucidate whether specific sets of mutations are present within the same subclones, and the order in which they occur. We demonstrate how subclone reconstruction provides crucial information about tumorigenesis and relapse mechanisms; guides functional study by variant prioritization, and has the potential as a rational basis for informed therapeutic strategies for the patient. SubcloneSeeker is available at: https://github.com/yiq/SubcloneSeeker.


Assuntos
Biologia Computacional/métodos , Variação Genética , Neoplasias/genética , Algoritmos , Células Clonais , Frequência do Gene , Humanos , Modelos Genéticos , Neoplasias/patologia , Navegador
16.
BMC Genomics ; 15: 354, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24885922

RESUMO

BACKGROUND: Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria.Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. RESULTS: By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). CONCLUSIONS: The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well.


Assuntos
Genoma , Toxoplasma/genética , Adenosina/genética , Adenosina/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Linhagem Celular , Metanossulfonato de Etila/toxicidade , Etilnitrosoureia/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Timidina/genética , Timidina/metabolismo , Toxoplasma/efeitos dos fármacos
17.
BMC Genomics ; 14: 467, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23837824

RESUMO

BACKGROUND: Toxoplasma gondii has a largely clonal population in North America and Europe, with types I, II and III clonal lineages accounting for the majority of strains isolated from patients. RH, a particular type I strain, is most frequently used to characterize Toxoplasma biology. However, compared to other type I strains, RH has unique characteristics such as faster growth, increased extracellular survival rate and inability to form orally infectious cysts. Thus, to identify candidate genes that could account for these parasite phenotypic differences, we determined genetic differences and differential parasite gene expression between RH and another type I strain, GT1. Moreover, as differences in host cell modulation could affect Toxoplasma replication in the host, we determined differentially modulated host processes among the type I strains through host transcriptional profiling. RESULTS: Through whole genome sequencing, we identified 1,394 single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) between RH and GT1. These SNPs/indels together with parasite gene expression differences between RH and GT1 were used to identify candidate genes that could account for type I phenotypic differences. A polymorphism in dense granule protein, GRA2, determined RH and GT1 differences in the evasion of the interferon gamma response. In addition, host transcriptional profiling identified that genes regulated by NF-ĸB, such as interleukin (IL)-12p40, were differentially modulated by the different type I strains. We subsequently showed that this difference in NF-ĸB activation was due to polymorphisms in GRA15. Furthermore, we observed that RH, but not other type I strains, recruited phosphorylated IĸBα (a component of the NF-ĸB complex) to the parasitophorous vacuole membrane and this recruitment of p- IĸBα was partially dependent on GRA2. CONCLUSIONS: We identified candidate parasite genes that could be responsible for phenotypic variation among the type I strains through comparative genomics and transcriptomics. We also identified differentially modulated host pathways among the type I strains, and these can serve as a guideline for future studies in examining the phenotypic differences among type I strains.


Assuntos
Fenótipo , Toxoplasma/genética , Toxoplasma/fisiologia , Animais , Fibroblastos/parasitologia , Regulação da Expressão Gênica , Genes de Protozoários/genética , Células HEK293 , Humanos , Subunidade p40 da Interleucina-12/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Toxoplasma/metabolismo , Vacúolos/metabolismo
18.
PLoS Genet ; 7(8): e1002236, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876680

RESUMO

As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations.


Assuntos
Elementos de DNA Transponíveis , Genoma Humano , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Genótipo , Heterozigoto , Humanos , Mutagênese Insercional , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA