Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Ocul Immunol Inflamm ; : 1-11, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728578

RESUMO

OBJECTIVE: To characterize and describe clinical experience with childhood-onset non-infectious uveitis. STUDY DESIGN: A multicenter retrospective multidisciplinary national web-based registry of 507 patients from 21 hospitals was analyzed. Cases were grouped as immune disease-associated (IMDu), idiopathic (IDIu) or ophthalmologically distinct. Characteristics of juvenile idiopathic arthritis-associated (non-HLA-B27-related) uveitis (JIAu), IDIu, and pars planitis (PP) were compared. RESULTS: IMDu (62.3%) and JIAu (51.9%) predominated in young females; and IDIu (22.7%) and PP (13.6%) in older children, without sex imbalance. Ocular complications occurred in 45.3% of cases (posterior synechiae [28%], cataracts [16%], band keratopathy [14%], ocular hypertension [11%] and cystoid macular edema [10%]) and were associated with synthetic (86%) and biologic (65%) disease-modifying antirheumatic drug (DMARD) use. Subgroups were significantly associated (p < 0.05) with different characteristics. JIAu was typically anterior (98%), insidious (75%), in ANA-positive (69%), young females (82%) with fewer complications (31%), better visual outcomes, and later use of uveitis-effective biologics. In contrast, IDIu was characteristically anterior (87%) or panuveitic (12.1%), with acute onset (60%) and more complications at onset (59%: synechiae [31%] and cataracts [9.6%]) and less DMARD use, while PP is intermediate, and was mostly bilateral (72.5%), persistent (86.5%) and chronic (86.8%), with more complications (70%; mainly posterior segment and cataracts at last visit), impaired visual acuity at onset, and greater systemic (81.2%), subtenon (29.1%) and intravitreal (10.1%) steroid use. CONCLUSION: Prognosis of childhood uveitis has improved in the "biologic era," particularly in JIAu. Early referral and DMARD therapy may reduce steroid use and improve outcomes, especially in PP and IDIu.

2.
Curr Opin Lipidol ; 35(4): 195-199, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640077

RESUMO

PURPOSE OF REVIEW: Autosomal dominant hypercholesterolemia is a common cause of cardiovascular disease. In addition to the classic genes that cause hypercholesterolemia, LDLR, APOB and PCSK9 , a new locus has emerged as a candidate to be the cause of this hyperlipidemia, the p.(Leu167del) mutation in the APOE gene. RECENT FINDINGS: Various studies have demonstrated the involvement of the p.(Leu167del) mutation in the APOE gene in hypercholesterolemia: Studies of family segregation, lipoprotein composition by ultracentrifugation and proteomic techniques, and functional studies of VLDL-carrying p.(Leu167del) internalization with cell cultures have demonstrated the role of this mutation in the cause of hypercholesterolemia. The phenotype of individuals carrying the p.(Leu167del) in APOE is indistinguishable from familial hypercholesterolemia individuals with mutations in the classic genes. However, a better response to lipid-lowering treatment has been demonstrated in these APOE mutation carrier individuals. SUMMARY: Therefore, APOE gene should be considered a candidate locus along with LDLR, APOB , and PCSK9 to be investigated in the genetic diagnosis of familial hypercholesterolemia.


Assuntos
Apolipoproteínas E , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/genética , Apolipoproteínas E/genética , Mutação , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
3.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507413

RESUMO

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias Hepáticas/patologia , RNA/metabolismo , Sumoilação
4.
Adv Sci (Weinh) ; 11(13): e2305177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258479

RESUMO

Familial hypercholesterolemia (FH) is an inherited metabolic disease affecting cholesterol metabolism, with 90% of cases caused by mutations in the LDL receptor gene (LDLR), primarily missense mutations. This study aims to integrate six commonly used predictive software to create a new model for predicting LDLR mutation pathogenicity and mapping hot spot residues. Six predictive-software are selected: Polyphen-2, SIFT, MutationTaster, REVEL, VARITY, and MLb-LDLr. Software accuracy is tested with the characterized variants annotated in ClinVar and, by bioinformatic and machine learning techniques all models are integrated into a more accurate one. The resulting optimized model presents a specificity of 96.71% and a sensitivity of 98.36%. Hot spot residues with high potential of pathogenicity appear across all domains except for the signal peptide and the O-linked domain. In addition, translating this information into 3D structure of the LDLr highlights potentially pathogenic clusters within the different domains, which may be related to specific biological function. The results of this work provide a powerful tool to classify LDLR pathogenic variants. Moreover, an open-access guide user interface (OptiMo-LDLr) is provided to the scientific community. This study shows that combination of several predictive software results in a more accurate prediction to help clinicians in FH diagnosis.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Fenótipo , Mutação , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Simulação por Computador
5.
Curr Atheroscler Rep ; 25(11): 839-859, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847331

RESUMO

PURPOSE OF REVIEW: Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH. RECENT FINDINGS: In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural alterations, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that might not be well represented in the databases used for training. This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Variação Genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Fenótipo
6.
Biomedicines ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509443

RESUMO

Phosphatidic acid (PA) is a key bioactive glycerophospholipid that is implicated in the regulation of vital cell functions such as cell growth, differentiation, and migration, and is involved in a variety of pathologic processes. However, the molecular mechanisms by which PA exerts its pathophysiological actions are incompletely understood. In the present work, we demonstrate that PA stimulates the migration of the human non-small cell lung cancer (NSCLC) A549 adenocarcinoma cells, as determined by the transwell migration assay. PA induced the rapid phosphorylation of mitogen-activated protein kinases (MAPKs) ERK1-2, p38, and JNK, and the pretreatment of cells with selective inhibitors of these kinases blocked the PA-stimulated migration of cancer cells. In addition, the chemotactic effect of PA was inhibited by preincubating the cells with pertussis toxin (PTX), a Gi protein inhibitor, suggesting the implication of a Gi protein-coupled receptor in this action. Noteworthy, a blockade of LPA receptor 1 (LPA1) with the specific LPA1 antagonist AM966, or with the selective LPA1 inhibitors Ki1645 or VPC32193, abolished PA-stimulated cell migration. Moreover, PA stimulated the phosphorylation of the transcription factor STAT3 downstream of JAK2, and inhibitors of either JAK2 or STAT3 blocked PA-stimulated cell migration. It can be concluded that PA stimulates lung adenocarcinoma cell migration through an interaction with the LPA1 receptor and subsequent activation of the MAPKs ERK1-2, p38, and JNK, and that the JAK2/STAT3 pathway is also important in this process. These findings suggest that targeting PA formation and/or the LPA1 receptor may provide new strategies to reduce malignancy in lung cancer.

7.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511081

RESUMO

The p.(Tyr400_Phe402del) mutation in the LDL receptor (LDLR) gene is the most frequent cause of familial hypercholesterolaemia (FH) in Gran Canaria. The aim of this study was to determine the age and origin of this prevalent founder mutation and to explore its functional consequences. For this purpose, we obtained the haplotypic information of 14 microsatellite loci surrounding the mutation in one homozygous individual and 11 unrelated heterozygous family trios. Eight different mutation carrier haplotypes were identified, which were estimated to originate from a common ancestral haplotype 387 (110-1572) years ago. This estimation suggests that this mutation happened after the Spanish colonisation of the Canary Islands, which took place during the fifteenth century. Comprehensive functional studies of this mutation showed that the expressed LDL receptor was retained in the endoplasmic reticulum, preventing its migration to the cell surface, thus allowing us to classify this LDLR mutation as a class 2a, defective, pathogenic variant.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Espanha , Hiperlipoproteinemia Tipo II/genética , Mutação , Receptores de LDL/genética , Heterozigoto
8.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108820

RESUMO

This Special Issue, "Cardiovascular Disease, Atherosclerosis and Familial Hypercholesterolemia: From Molecular Mechanisms Causing Pathogenicity to New Therapeutic Approaches", contributes to advancing our knowledge of the molecular mechanisms that drive cardiovascular disease, atherosclerosis and familial hypercholesterolemia and the development of state-of-the-art research in the field [...].


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hiperlipoproteinemia Tipo II , Humanos , Doenças Cardiovasculares/complicações , Virulência , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Aterosclerose/etiologia , Aterosclerose/tratamento farmacológico
9.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834740

RESUMO

Familial hypercholesterolaemia (FH) is an autosomal dominant dyslipidaemia, characterised by elevated LDL cholesterol (LDL-C) levels in the blood. Three main genes are involved in FH diagnosis: LDL receptor (LDLr), Apolipoprotein B (APOB) and Protein convertase subtilisin/kexin type 9 (PCSK9) with genetic mutations that led to reduced plasma LDL-C clearance. To date, several PCSK9 gain-of-function (GOF) variants causing FH have been described based on their increased ability to degrade LDLr. On the other hand, mutations that reduce the activity of PCSK9 on LDLr degradation have been described as loss-of-function (LOF) variants. It is therefore important to functionally characterise PCSK9 variants in order to support the genetic diagnosis of FH. The aim of this work is to functionally characterise the p.(Arg160Gln) PCSK9 variant found in a subject suspected to have FH. Different techniques have been combined to determine efficiency of the autocatalytic cleavage, protein expression, effect of the variant on LDLr activity and affinity of the PCSK9 variant for the LDLr. Expression and processing of the p.(Arg160Gln) variant had a result similar to that of WT PCSK9. The effect of p.(Arg160Gln) PCSK9 on LDLr activity is lower than WT PCSK9, with higher values of LDL internalisation (13%) and p.(Arg160Gln) PCSK9 affinity for the LDLr is lower than WT, EC50 8.6 ± 0.8 and 25.9 ± 0.7, respectively. The p.(Arg160Gln) PCSK9 variant is a LOF PCSK9 whose loss of activity is caused by a displacement of the PCSK9 P' helix, which reduces the stability of the LDLr-PCSK9 complex.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , LDL-Colesterol , Subtilisina/genética , Mutação , Hiperlipoproteinemia Tipo II/genética , Proteínas Mutantes/genética , Receptores de LDL/genética
10.
Eur J Pediatr ; 182(1): 307-317, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335186

RESUMO

Tumor-necrosis-factor-α inhibitors (anti-TNF-α) are associated with an increased risk of tuberculosis (TB) disease, primarily due to reactivation of latent TB infection (LTBI). We assessed the performance of parallel LTBI screening with tuberculin skin test (TST) and QuantiFERON-TB Gold In-Tube assays (QFT-GIT) before anti-TNF-α treatment in children with immune-mediated inflammatory disorders in a low TB-burden setting. We conducted a multicenter cohort study involving 17 pediatric tertiary centers in Spain. LTBI was defined as the presence of a positive TST and/or QFT-GIT result without clinical or radiological signs of TB disease. A total of 270 patients (median age:11.0 years) were included, mainly with rheumatological (55.9%) or inflammatory bowel disease (34.8%). Twelve patients (4.4%) were diagnosed with TB infection at screening (LTBI, n = 11; TB disease, n = 1). Concordance between TST and QFT-GIT results was moderate (TST+/QFT-GIT+, n = 4; TST-/QFT-GIT+, n = 3; TST+/QFT-GIT-, n = 5; kappa coefficient: 0.48, 95% CI: 0.36-0.60). Indeterminate QFT-GIT results occurred in 10 patients (3.7%) and were associated with young age and elevated C-reactive protein concentrations. Eleven of 12 patients with TB infection uneventfully completed standard LTBI or TB treatment. During a median follow-up period of 6.4 years, only 2 patients developed TB disease (incidence density: 130 (95% CI: 20-440) per 100,000 person-years), both probable de novo infections. CONCLUSION: A substantial number of patients were diagnosed with LTBI during screening. The dual strategy identified more cases than either of the tests alone, and test agreement was only moderate. Our data show that in children in a low TB prevalence setting, a dual screening strategy with TST and IGRA before anti-TNF-α treatment is effective. WHAT IS KNOWN: • The optimal screening strategy for latent tuberculosis in children with immune-mediated inflammatory disorders remains uncertain. • Children receiving anti-TNF-α drugs are at increased risk of developing severe tuberculosis disease. WHAT IS NEW: • A dual screening strategy, using TST and an IGRA assay, identified more children with latent tuberculosis than either of the tests alone. • Identification and treatment of latent tuberculosis before initiation of anti-TNF-α therapy averted incident tuberculosis cases.


Assuntos
Tuberculose Latente , Tuberculose , Humanos , Criança , Teste Tuberculínico/métodos , Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/epidemiologia , Tuberculina/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/uso terapêutico , Espanha/epidemiologia , Estudos de Coortes , Testes de Liberação de Interferon-gama/métodos
11.
Arterioscler Thromb Vasc Biol ; 42(7): e203-e216, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510551

RESUMO

BACKGROUND: PCSK9 (Proprotein convertase subtilisin/kexin type 9) regulates LDL-C (low-density lipoprotein cholesterol) metabolism by targeting LDLr (LDL receptor) for lysosomal degradation. PCSK9 gain-of-function variants cause autosomal dominant hypercholesterolemia by reducing LDLr levels, the D374Y variant being the most severe, while loss-of-function variants are associated with low LDL-C levels. Gain-of-function and loss-of-function activities have also been attributed to variants occurring in the PCSK9 signal peptide. Among them, L11 is a very rare PCSK9 variant that seems to increase LDL-C values in a moderate way causing mild hypercholesterolemia. METHODS: Using molecular biology and biophysics methodologies, activities of L8 and L11 variants, both located in the leucine repetition stretch of the signal peptide, have been extensively characterized in vitro. RESULTS: L8 variant is not associated with increased LDLr activity, whereas L11 activity is increased by ≈20% compared with wt PCSK9. The results suggest that the L11 variant reduces LDLr levels intracellularly by a process resulting from impaired cleavage of the signal peptide. This would lead to less efficient LDLr transport to the cell membrane and promote LDLr intracellular degradation. CONCLUSIONS: Deletion of a leucine in the signal peptide in L8 variant does not affect PCSK9 activity, whereas the leucine duplication in the L11 variant enhances LDLr intracellular degradation. These findings highlight the importance of deep in vitro characterization of PCSK9 genetic variants to determine pathogenicity and improve clinical diagnosis and therapy of inherited familial hypercholesterolemia disease.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , LDL-Colesterol , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Leucina , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Sinais Direcionadores de Proteínas , Receptores de LDL/genética , Receptores de LDL/metabolismo
12.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328769

RESUMO

Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.


Assuntos
Aterosclerose , Calcinose , Doenças Cardiovasculares , Placa Aterosclerótica , Aterosclerose/metabolismo , Calcinose/complicações , Doenças Cardiovasculares/metabolismo , Humanos , Fatores de Risco
13.
Small ; 18(13): e2105915, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156292

RESUMO

Cardiovascular disease, the leading cause of mortality worldwide, is primarily caused by atherosclerosis, which is characterized by lipid and inflammatory cell accumulation in blood vessels and carotid intima thickening. Although disease management has improved significantly, new therapeutic strategies focused on accelerating atherosclerosis regression must be developed. Atherosclerosis models mimicking in vivo-like conditions provide essential information for research and new advances toward clinical application. New nanotechnology-based therapeutic opportunities have emerged with apoA-I nanoparticles (recombinant/reconstituted high-density lipoproteins, rHDL) as ideal carriers to deliver molecules and the discovery that microRNAs participate in atherosclerosis establishment and progression. Here, a therapeutic strategy to improve cholesterol efflux is developed based on a two-step administration of rHDL consisting of a first dose of antagomiR-33a-loaded rHDLs to induce adenosine triphosphate-binding cassette transporters A1 overexpression, followed by a second dose of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine rHDLs, which efficiently remove cholesterol from foam cells. A triple-cell 2D-atheroma plaque model reflecting the cellular complexity of atherosclerosis is used to improve efficiency of the nanoparticles in promoting cholesterol efflux. The results show that sequential administration of rHDL potentiates cholesterol efflux indicating that this approach may be used in vivo to more efficiently target atherosclerotic lesions and improve prognosis of the disease.


Assuntos
Aterosclerose , MicroRNAs , Aterosclerose/tratamento farmacológico , Colesterol , Células Espumosas , Humanos , Macrófagos , MicroRNAs/uso terapêutico
14.
Hepatology ; 76(6): 1617-1633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35030285

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS: The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS: Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Humanos , Proteoma , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Lipídeos/uso terapêutico , Proliferação de Células
15.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948399

RESUMO

BACKGROUND: Gain of function (GOF) mutations of PCSK9 cause autosomal dominant familial hypercholesterolemia as they reduce the abundance of LDL receptor (LDLR) more efficiently than wild-type PCSK9. In contrast, PCSK9 loss of function (LOF) variants are associated with a hypocholesterolemic phenotype. Dozens of PCSK9 variants have been reported, but most remain of unknown significance since their characterization has not been conducted. OBJECTIVE: Our aim was to make the most comprehensive assessment of PCSK9 variants and to determine the simplest approach for the classification of these variants. METHODS: The expression, maturation, secretion, and activity of nine well-established PCSK9 variants were assessed in transiently transfected HEK293 cells by Western blot and flow cytometry. Their extracellular activities were determined in HepG2 cells incubated with the purified recombinant PCSK9 variants. Their binding affinities toward the LDLR were determined by solid-phase immunoassay. RESULTS: LDLR expression increased when cells were transfected with LOF variants and reduced when cells were transfected with GOF variants compared with wild-type PCSK9. Extracellular activities measurements yielded exactly similar results. GOF and LOF variants had increased, respectively reduced, affinities for the LDLR compared with wild-type PCSK9 with the exception of one GOF variant (R218S) that showed complete resistance to inactivation by furin. All variants were expressed at similar levels and underwent normal maturation and secretion patterns except for two LOF and two GOF mutants. CONCLUSIONS: We propose that transient transfections of HEK293 cells with a plasmid encoding a PCSK9 variant followed by LDLR expression assessment by flow cytometry is sufficient to reliably determine its GOF or LOF status. More refined experiments should only be used to determine the underlying mechanism(s) at hand.


Assuntos
Pró-Proteína Convertase 9/genética , Mutação com Ganho de Função , Células HEK293 , Células Hep G2 , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo
16.
Atherosclerosis ; 329: 14-21, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34167030

RESUMO

BACKGROUND AND AIMS: Familial hypercholesterolaemia (FH) is an autosomal disorder of lipid metabolism presenting with increased cardiovascular risk. LDLR mutations are the cause of disease in 90% of the cases but functional studies have only been performed for about 15% of all LDLR variants. In the Portuguese Familial Hypercholesterolemia Study (PFHS), 142 unique LDLR alterations were identified and 44 (30%) lack functional characterization. The aim of the present work is to increase evidence for variant classification by performing functional characterization of 13 LDLR missense alterations found in Portugal and in 20 other countries. METHODS: Different LDLR mutants were generated by site-directed mutagenesis and expressed in CHO-ldlA7 cells lacking endogenous expression of LDLR. To determine the effects of alterations on LDLR function, cell surface expression, binding and uptake of FITC-LDL were assessed by flow cytometry and Western blot. RESULTS: Of the 13 variants studied 7 were shown to affect LDLR function - expression, binding or uptake, with rates lower than 60%: p.(Cys184Tyr), p.(Gly207_Ser213del); p.(His211Asp); p.(Asp221Tyr); p.(Glu288Lys); p.(Gly592Glu) and p.(Asp601Val)). The remaining 6 variants do not alter the LDLR function. CONCLUSIONS: These studies contributed to an update of these variants classification: from the 9 variants classified as variants of unknown significance, 7 have reached now a final classification and 3 variants have improved classification from likely pathogenic to pathogenic. In Portugal, an additional 55 patients received an FH definite diagnosis thanks to these studies. Since only likely pathogenic and pathogenic variants are clinically actionable, this work shows the importance of functional studies for variant classification.


Assuntos
Hiperlipoproteinemia Tipo II , Receptores de LDL , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperlipoproteinemia Tipo II/genética , Mutação , Receptores de LDL/genética
17.
Arterioscler Thromb Vasc Biol ; 41(2): 934-943, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147992

RESUMO

OBJECTIVE: Familial hypercholesterolemia (FH) is characterized by elevated low-density lipoprotein-cholesterol and markedly increased cardiovascular risk. In patients with a genetic diagnosis, low-density lipoprotein receptor (LDLR) mutations account for >90% of cases, apolipoprotein B (APOB) mutations for ≈5% of cases, while proprotein convertase subtilisin kexin type 9 (PCSK9) gain of function mutations are rare (<1% of cases). We aimed to evaluate the functional impact of several novel PCSK9 variants in a cohort of patients with FH by genetic cascade screening and in vitro functionality assays. Approach and Results: Patients with clinically diagnosed FH underwent genetic analysis of LDLR, and if negative, sequential testing of APOB and PCSK9. We analyzed cosegregation of hypercholesterolemia with novel PCSK9 variants. Gain of function status was determined by in silico analyses and validated by in vitro functionality assays. Among 1055 persons with clinical FH, we identified nonsynonymous PCSK9 variants in 27 (2.6%) patients and 7 of these carried one of the 4 previously reported gain of function variants. In the remaining 20 patients with FH, we identified 7 novel PCSK9 variants. The G516V variant (c.1547G>T) was found in 5 index patients and cascade screening identified 15 additional carriers. Low-density lipoprotein-cholesterol levels were higher in these 15 carriers compared with the 27 noncarriers (236±73 versus 124±35 mg/dL; P<0.001). In vitro studies demonstrated the pathogenicity of the G516V variant. CONCLUSIONS: In our study, 1.14% of cases with clinical FH were clearly attributable to pathogenic variants in PCSK9. Pathogenicity is established beyond doubt for the G516V variant.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Mutação , Pró-Proteína Convertase 9/genética , Adulto , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Fatores de Risco de Doenças Cardíacas , Células Hep G2 , Hereditariedade , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Intervalo Livre de Progressão , Pró-Proteína Convertase 9/metabolismo , Medição de Risco , África do Sul , Fatores de Tempo , Adulto Jovem
18.
Rev Esp Cardiol (Engl Ed) ; 74(8): 664-673, 2021 Aug.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32660911

RESUMO

INTRODUCTION AND OBJECTIVES: Our objective was to approximate the prevalence of mutations in candidate genes for familial hypercholesterolemia (FH) in a middle-aged Spanish population and to establish the predictive value of criteria for clinical suspicion in the detection of causative mutations. METHODS: Unrelated individuals aged ≥ 18 years from the Aragon Workers' Health Study (AWHS) with high low-density lipoprotein cholesterol (LDL-C) and clinical suspicion of FH (participants with LDL-C concentrations above the 95th percentile, participants with premature cardiovascular disease and/or participants with high LDL-C [130 mg/dL] under statin therapy), assuming that any participant with FH exhibits at leats 1 trait, were selected and the LDLR, APOB, PCSK9, APOE, STAP1 and LDLRAP1 genes were sequenced by next generation sequencing technology. RESULTS: Of 5400 individuals from the AWHS, 4514 had complete data on lipid levels and lipid-lowering drugs, 255 participants (5.65%) met the criteria for suspicion of FH, 24 of them (9.41%) were diagnosed with hyperlipoproteinemia(a), and 16 (6.27% of those sequenced) were found to carry causative mutations in candidate genes: 12 participants carried 11 different pathogenic LDLR alleles and 4 participants carried 1 pathogenic mutation in PCSK9. LDL-C concentrations> 220 mg/dL and LDL-C> 130 mg/dL despite statin therapy showed the strongest association with the presence of mutations (P=.011). CONCLUSIONS: Our results show that the prevalence of FH in Spain is 1:282 and suggest that the combination of high untreated LDL-C and high levels of LDL-C despite statin therapy are the best predictors of a positive FH genetic test.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Pessoa de Meia-Idade , Mutação , Pró-Proteína Convertase 9/genética , Espanha/epidemiologia
19.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212990

RESUMO

Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.


Assuntos
Hepatócitos/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Linhagem Celular , Hepatócitos/citologia , Humanos , Insulina/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor de Insulina/genética
20.
Nat Commun ; 11(1): 4033, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820167

RESUMO

Peptide hormones and neuropeptides encompass a large class of bioactive peptides that regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-glycans on peptide hormones. We find that almost one third of the 279 classified peptide hormones carry O-glycans. Many of the identified O-glycosites are conserved and are predicted to serve roles in proprotein processing, receptor interaction, biodistribution and biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of members of the neuropeptide Y and glucagon families modulate receptor activation properties and substantially extend peptide half-lives. Our study highlights the importance of O-glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large class of biomolecules serves as a discovery platform for an important class of molecules with potential opportunities for drug designs.


Assuntos
Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Idoso , Animais , Linhagem Celular , Desenho de Fármacos , Feminino , Glicosilação , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA