Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35413017

RESUMO

Elucidating how resident enteric bacteria interact with their hosts to promote health or inflammation is of central importance to diarrheal and inflammatory bowel diseases across species. Here, we integrated the microbial and chemical microenvironment of a patient's ileal mucosa with their clinical phenotype and genotype to identify factors favoring the growth and virulence of adherent and invasive E. coli (AIEC) linked to Crohn's disease. We determined that the ileal niche of AIEC was characterized by inflammation, dysbiosis, coculture of Enterococcus, and oxidative stress. We discovered that mucosal metabolites supported general growth of ileal E. coli, with a selective effect of ethanolamine on AIEC that was augmented by cometabolism of ileitis-associated amino acids and glutathione and by symbiosis-associated fucose. This metabolic plasticity was facilitated by the eut and pdu microcompartments, amino acid metabolism, γ-glutamyl-cycle, and pleiotropic stress responses. We linked metabolism to virulence and found that ethanolamine and glutamine enhanced AIEC motility, infectivity, and proinflammatory responses in vitro. We connected use of ethanolamine to intestinal inflammation and L-fuculose phosphate aldolase (fucA) to symbiosis in AIEC monoassociated IL10-/- mice. Collectively, we established that AIEC were pathoadapted to utilize mucosal metabolites associated with health and inflammation for growth and virulence, enabling the transition from symbiont to pathogen in a susceptible host.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Animais , Aderência Bacteriana , Doença de Crohn/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Etanolaminas/metabolismo , Promoção da Saúde , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Virulência
2.
J Cachexia Sarcopenia Muscle ; 11(5): 1187-1199, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32274897

RESUMO

BACKGROUND: Constitutional thinness (CT), a non-malnourished underweight state with no eating disorders, is characterized by weight gain resistance to high fat diet. Data issued from muscle biopsies suggested blunted anabolic mechanisms in free-living state. Weight and metabolic responses to protein caloric supplementation has not been yet explored in CT. METHODS: A 2 week overfeeding (additional 600 kcal, 30 g protein, 72 g carbohydrate, and 21 g fat) was performed to compare two groups of CTs (12 women and 11 men) to normal-weight controls (12 women and 10 men). Bodyweight, food intake, energy expenditure, body composition, nitrogen balance, appetite hormones profiles, and urine metabolome were monitored before and after overfeeding. RESULTS: Before overfeeding, positive energy gap was found in both CT genders (309 ± 370 kcal in CT-F and 332 ± 709 kcal in CT-M) associated with higher relative protein intake per kilo (1.74 ± 0.32 g/kg/day in CT-F vs. 1.16 ± 0.23 in C-F, P < 0.0001; 1.56 ± 0.36 in CT-M vs. 1.22 ± 0.32 in C-M, P = 0.03), lower nitrogen (7.26 ± 2.36 g/day in CT-F vs. 11.41 ± 3.64 in C-F, P = 0.003; 9.70 ± 3.85 in CT-M vs. 14.14 ± 4.19 in C-M, P = 0.02), but higher essential amino acids urinary excretion (CT/C fold change of 1.13 for leucine and 1.14 for arginine) in free-living conditions. After overfeeding, CTs presented an accentuated positive energy gap, still higher than in controls (675 ± 540 in CTs vs. 379 ± 427 in C, P = 0.04). Increase in lean mass was induced in both controls genders but not in CTs (a trend was noticed in CT women), despite a similar nitrogen balance after overfeeding (5.06 ± 4.33 g/day in CTs vs. 4.28 ± 3.15 in controls, P = 0.49). Higher anorectic gut hormones' tone, glucagon-like peptide 1 and peptide tyrosine tyrosine, during test meal and higher snacking frequency were noticed before and after overfeeding in CTs. CONCLUSIONS: The blunted muscle energy mechanism, previously described in CTs in free-living state, is associated with basal saturated protein turn over suggested by the concordance of positive nitrogen balance and an increased urine excretion of several essential amino acids. This saturation cannot be overpassed by increasing this spontaneous high-protein intake suggesting a resistance to lean mass gain in CT phenotype.


Assuntos
Condições Sociais , Magreza , Adolescente , Composição Corporal , Metabolismo Energético , Feminino , Humanos , Masculino , Aumento de Peso , Adulto Jovem
3.
Clin Nutr ; 39(10): 3147-3152, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32147199

RESUMO

BACKGROUND: Pediatric inflammatory bowel disease (IBD) is often associated with growth retardation due to malnutrition. However, knowledge on total energy expenditure (TEE), active-induced energy expenditure (AEE) and physical activity remains limited in children with IBD. OBJECTIVE: Assessment of TEE using the doubly labelled water (DLW) method, resting energy expenditure (REE) using indirect calorimetry, and physical activity level using the actigraph GT3X+ in children with IBD (in remission) and healthy controls. METHODS: TEE, REE, AEE and physical activity were measured in 21 children with IBD and 24 healthy controls at baseline. IBD children parameters were monitored further after 6 and 12 months. Predicted REE and TEE values (using Schoefield and the actigraph GT3X+, for REE and TEE respectively) were compared to measured values. RESULTS: Mean ages at baseline were 14.8 ± 1.5 and 13.2 ± 2 years in children with IBD and in healthy control children, respectively. Measured TEEDLW was significantly lower (P < 0.001) in children with IBD compared to the healthy control group. REE corrected by FFM0.5, REE and AEE were also significantly lower in children with IBD. Children with IBD had AEE of 17.5% of TEE and had a significantly higher sedentary behaviour as compared to healthy children. CONCLUSIONS: This study suggests that TEE and AEE are reduced in children with IBD in clinical remission which may result in a reduced moderate and vigorous physical activity level. Our result also highlights that the actigraph GT3X + might give good prediction of TEE in children with IBD at group level but it remains highly variable at individual level.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Metabolismo Energético , Exercício Físico , Actigrafia , Adolescente , Fatores Etários , Calorimetria Indireta , Estudos de Casos e Controles , Criança , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/fisiopatologia , Colite Ulcerativa/terapia , Doença de Crohn/diagnóstico , Doença de Crohn/fisiopatologia , Doença de Crohn/terapia , Feminino , Humanos , Masculino , Estudos Prospectivos , Indução de Remissão , Medição de Risco , Fatores de Risco , Fatores de Tempo
4.
World J Gastroenterol ; 23(20): 3643-3654, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28611517

RESUMO

AIM: To identify metabolic signatures in urine samples from healthy and inflammatory bowel disease (IBD) children. METHODS: We applied liquid chromatography and gas chromatography coupled to targeted mass spectrometry (MS)-based metabolite profiling to identify and quantify bile acids and host-gut microbial metabolites in urine samples collected from 21 pediatric IBD patients monitored three times over one year (baseline, 6 and 12 mo), and 27 age- and gender-matched healthy children. RESULTS: urinary metabolic profiles of IBD children differ significantly from healthy controls. Such metabolic differences encompass central energy metabolism, amino acids, bile acids and gut microbial metabolites. In particular, levels of pyroglutamic acid, glutamic acid, glycine and cysteine, were significantly higher in IBD children in the course of the study. This suggests that glutathione cannot be optimally synthesized and replenished. Whilst alterations of the enterohepatic circulation of bile acids in pediatric IBD patients is known, we show here that non-invasive urinary bile acid profiling can assess those altered hepatic and intestinal barrier dysfunctions. CONCLUSION: The present study shows how non-invasive sampling of urine followed by targeted MS-based metabonomic analysis can elucidate and monitor the metabolic status of children with different GI health/disease status.


Assuntos
Ácidos e Sais Biliares/urina , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/urina , Metaboloma , Urina/química , Adolescente , Antropometria , Composição Corporal , Estudos de Casos e Controles , Criança , Colite Ulcerativa/urina , Doença de Crohn/urina , Cisteína/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Ácido Glutâmico/urina , Glutationa/urina , Glicina/urina , Humanos , Inflamação , Masculino , Metabolômica , Interações Microbianas , Fenótipo , Ácido Pirrolidonocarboxílico/urina , Transdução de Sinais
5.
Alzheimers Res Ther ; 9(1): 43, 2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623948

RESUMO

BACKGROUND: Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. METHODS: Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/ß-Amyloid 1-42 peptide chain [Aß1-42] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. RESULTS: The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aß1-42, tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers. CONCLUSIONS: We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/epidemiologia , Compostos Inorgânicos de Carbono/líquido cefalorraquidiano , Carbono/sangue , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/epidemiologia , Homocisteína/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Transtornos Cognitivos/diagnóstico , Comorbidade , Feminino , Humanos , Masculino , Prevalência , Fatores de Risco , Suíça/epidemiologia
6.
Anal Chem ; 89(10): 5565-5577, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28437060

RESUMO

The ability to identify and quantify small molecule metabolites derived from gut microbial-mammalian cometabolism is essential for the understanding of the distinct metabolic functions of the microbiome. To date, analytical protocols that quantitatively measure a complete panel of microbial metabolites in biological samples have not been established but are urgently needed by the microbiome research community. Here, we report an automated high-throughput quantitative method using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform to simultaneously measure over one hundred microbial metabolites in human serum, urine, feces, and Escherichia coli cell samples within 15 min per sample. A reference library was developed consisting of 145 methyl and ethyl chloroformate (MCF and ECF) derivatized compounds with their mass spectral and retention index information for metabolite identification. These compounds encompass different chemical classes including fatty acids, amino acids, carboxylic acids, hydroxylic acids, and phenolic acids as well as benzoyl and phenyl derivatives, indoles, etc., that are involved in a number of important metabolic pathways. Within an optimized range of concentrations and sample volumes, most derivatives of both reference standards and endogenous metabolites in biological samples exhibited satisfactory linearity (R2 > 0.99), good intrabatch reproducibility, and acceptable stability within 6 days (RSD < 20%). This method was further validated by examination of the analytical variability of 76 paired human serum, urine, and fecal samples as well as quality control samples. Our method involved using high-throughput sample preparation, measurement with automated derivatization, and rapid GC/TOFMS analysis. Both techniques are well suited for microbiome metabolomics studies.


Assuntos
Escherichia coli/metabolismo , Formiatos/química , Ésteres do Ácido Fórmico/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Automação , Escherichia coli/química , Fezes/química , Humanos , Análise de Componente Principal , Reprodutibilidade dos Testes , Soro/química , Urina/química
7.
Anal Bioanal Chem ; 409(1): 295-305, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757515

RESUMO

The methionine cycle is a key pathway contributing to the regulation of human health, with well-established involvement in cardiovascular diseases and cognitive function. Changes in one-carbon cycle metabolites have also been associated with mild cognitive decline, vascular dementia, and Alzheimer's disease. Today, there is no single analytical method to monitor both metabolites and co-factors of the methionine cycle. To address this limitation, we here report for the first time a new method for the simultaneous quantitation of 17 metabolites in the methionine cycle, which are homocysteic acid, taurine, serine, cysteine, glycine, homocysteine, riboflavin, methionine, pyridoxine, cystathionine, pyridoxamine, S-adenosylhomocysteine, S-adenosylmethionine, betaine, choline, dimethylglycine, and 5-methyltetrahydrofolic acid. This multianalyte method, developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), provides a highly accurate and precise quantitation of these 17 metabolites for both plasma and cerebrospinal fluid metabolite monitoring. The method requires a simple sample preparation, which, combined with a short chromatographic run time, ensures a high sample throughput. This analytical strategy will thus provide a novel metabolomics approach to be employed in large-scale observational and intervention studies. We expect such a robust method to be particularly relevant for broad and deep molecular phenotyping of individuals in relation to their nutritional requirements, health monitoring, and disease risk management.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Homocisteína/sangue , Homocisteína/líquido cefalorraquidiano , Metabolômica/métodos , Metionina/sangue , Metionina/líquido cefalorraquidiano , Espectrometria de Massas em Tandem/métodos , Ensaios de Triagem em Larga Escala/métodos , Homocisteína/metabolismo , Humanos , Técnicas de Diluição do Indicador , Limite de Detecção , Redes e Vias Metabólicas , Metionina/metabolismo , Pessoa de Meia-Idade
8.
Int J Mol Sci ; 17(8)2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27529220

RESUMO

BACKGROUND: Growth failure and delayed puberty are well known features of children and adolescents with inflammatory bowel disease (IBD), in addition to the chronic course of the disease. Urinary metabonomics was applied in order to better understand metabolic changes between healthy and IBD children. METHODS: 21 Pediatric patients with IBD (mean age 14.8 years, 8 males) were enrolled from the Pediatric Gastroenterology Outpatient Clinic over two years. Clinical and biological data were collected at baseline, 6, and 12 months. 27 healthy children (mean age 12.9 years, 16 males) were assessed at baseline. Urine samples were collected at each visit and subjected to ¹H Nuclear Magnetic Resonance (NMR) spectroscopy. RESULTS: Using ¹H NMR metabonomics, we determined that urine metabolic profiles of IBD children differ significantly from healthy controls. Metabolic differences include central energy metabolism, amino acid, and gut microbial metabolic pathways. The analysis described that combined urinary urea and phenylacetylglutamine-two readouts of nitrogen metabolism-may be relevant to monitor metabolic status in the course of disease. CONCLUSION: Non-invasive sampling of urine followed by metabonomic profiling can elucidate and monitor the metabolic status of children in relation to disease status. Further developments of omic-approaches in pediatric research might deliver novel nutritional and metabolic hypotheses.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/urina , Adolescente , Criança , Colite Ulcerativa/metabolismo , Colite Ulcerativa/urina , Doença de Crohn/metabolismo , Doença de Crohn/urina , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica
9.
J Proteome Res ; 14(4): 1911-9, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25751005

RESUMO

Inflammatory bowel diseases are acute and chronic disabling inflammatory disorders with multiple complex etiologies that are not well-defined. Chronic intestinal inflammation has been linked to an energy-deficient state of gut epithelium with alterations in oxidative metabolism. Plasma-, urine-, stool-, and liver-specific metabonomic analyses are reported in a naïve T cell adoptive transfer (AT) experimental model of colitis, which evaluated the impact of long-chain n-3 polyunsaturated fatty acid (PUFA)-enriched diet. Metabolic profiles of AT animals and their controls under chow diet or fish oil supplementation were compared to describe the (i) consequences of inflammatory processes and (ii) the differential impact of n-3 fatty acids. Inflammation was associated with higher glycoprotein levels (related to acute-phase response) and remodeling of PUFAs. Low triglyceride levels and enhanced PUFA levels in the liver suggest activation of lipolytic pathways that could lead to the observed increase of phospholipids in the liver (including plasmalogens and sphingomyelins). In parallel, the increase in stool excretion of most amino acids may indicate a protein-losing enteropathy. Fecal content of glutamine was lower in AT mice, a feature exacerbated under fish oil intervention that may reflect a functional relationship between intestinal inflammatory status and glutamine metabolism. The decrease in Krebs cycle intermediates in urine (succinate, α-ketoglutarate) also suggests a reduction in the glutaminolytic pathway at a systemic level. Our data indicate that inflammatory status is related to this overall loss of energy homeostasis.


Assuntos
Transferência Adotiva/métodos , Colite/metabolismo , Colite/prevenção & controle , Óleos de Peixe/farmacologia , Metaboloma/fisiologia , Metabolômica/métodos , Animais , Suplementos Nutricionais , Fezes/química , Glutamina/análise , Ácidos Cetoglutáricos/análise , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Metaboloma/efeitos dos fármacos , Camundongos , Ácido Succínico/análise , Urina/química
10.
PLoS Genet ; 10(2): e1004132, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586186

RESUMO

Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on (1)H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10(-8)) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10(-44)) and lysine (rs8101881, P = 1.2×10(-33)), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.


Assuntos
Metaboloma/genética , Metabolômica , Polimorfismo de Nucleotídeo Único/genética , Urina , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Doença de Crohn/genética , Doença de Crohn/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Galactosídeo 2-alfa-L-Fucosiltransferase
11.
PLoS One ; 8(8): e71661, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977107

RESUMO

BACKGROUND: Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD) and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD) impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS: TNF(ΔARE/WT) mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics) were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG) translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS: HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT). Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS: HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease-relevant mouse model through mechanisms that involve increased intestinal permeability and altered luminal factors, leading to enhanced dendritic cell recruitment and promoted Th17 immune responses.


Assuntos
Doença de Crohn/etiologia , Doença de Crohn/patologia , Dieta Hiperlipídica/efeitos adversos , Ileíte/etiologia , Ileíte/patologia , Obesidade/complicações , Tecido Adiposo/patologia , Animais , Polaridade Celular , Doença de Crohn/sangue , Doença de Crohn/imunologia , Células Dendríticas/metabolismo , Endotoxinas/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Regulação da Expressão Gênica , Glucose/metabolismo , Ileíte/sangue , Ileíte/imunologia , Íleo/metabolismo , Íleo/patologia , Inflamação/complicações , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Obesidade/sangue , Obesidade/imunologia , Obesidade/patologia , Ocludina/metabolismo , Células Th17/citologia , Fator de Necrose Tumoral alfa/genética
12.
Lipids Health Dis ; 12: 81, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23725086

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic intestinal inflammatory diseases affecting about 1% of western populations. New eating behaviors might contribute to the global emergence of IBD. Although the immunoregulatory effects of omega-3 fatty acids have been well characterized in vitro, their role in IBD is controversial. METHODS: The aim of this study was to assess the impact of increased fish oil intake on colonic gene expression, eicosanoid metabolism and development of colitis in a mouse model of IBD. Rag-2 deficient mice were fed fish oil (FO) enriched in omega-3 fatty acids i.e. EPA and DHA or control diet for 4 weeks before colitis induction by adoptive transfer of naïve T cells and maintained in the same diet for 4 additional weeks. Onset of colitis was monitored by colonoscopy and further confirmed by immunological examinations. Whole genome expression profiling was made and eicosanoids were measured by HPLC-MS/MS in colonic samples. RESULTS: A significant reduction of colonic proinflammatory eicosanoids in FO fed mice compared to control was observed. However, neither alteration of colonic gene expression signature nor reduction in IBD scores was observed under FO diet. CONCLUSION: Thus, increased intake of dietary FO did not prevent experimental colitis.


Assuntos
Colite/dietoterapia , Colite/metabolismo , Eicosanoides/metabolismo , Óleos de Peixe/farmacologia , Intestinos/efeitos dos fármacos , Animais , Colite/genética , Colo/fisiopatologia , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/química , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/etiologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia
13.
J Proteome Res ; 11(12): 6252-63, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23163751

RESUMO

Systems biology approaches are providing novel insights into the role of nutrition for the management of health and disease. In the present study, we investigated if dietary preference for dark chocolate in healthy subjects may lead to different metabolic response to daily chocolate consumption. Using NMR- and MS-based metabolic profiling of blood plasma and urine, we monitored the metabolic response of 10 participants stratified as chocolate desiring and eating regularly dark chocolate (CD) and 10 participants stratified as chocolate indifferent and eating rarely dark chocolate (CI) to a daily consumption of 50 g of dark chocolate as part of a standardized diet over a one week period. We demonstrated that preference for chocolate leads to different metabolic response to chocolate consumption. Daily intake of dark chocolate significantly increased HDL cholesterol by 6% and decreased polyunsaturated acyl ether phospholipids. Dark chocolate intake could also induce an improvement in the metabolism of long chain fatty acid, as noted by a compositional change in plasma fatty acyl carnitines. Moreover, a relationship between regular long-term dietary exposure to a small amount of dark chocolate, gut microbiota, and phenolics was highlighted, providing novel insights into biological processes associated with cocoa bioactives.


Assuntos
Cacau/metabolismo , Doces , Preferências Alimentares , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Adulto , Bactérias/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Carnitina/sangue , Carnitina/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Metabolômica/métodos , Metagenoma , Pessoa de Meia-Idade , Éteres Fosfolipídicos/sangue , Éteres Fosfolipídicos/metabolismo , Polifenóis/urina , Fatores de Tempo , Urinálise/métodos , Adulto Jovem
14.
J Proteome Res ; 11(10): 4781-90, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22905879

RESUMO

Health is influenced by genetic, lifestyle, and diet determinants; therefore, nutrition plays an essential role in health management. Still, the substantiation of nutritional health benefits is challenged by the intrinsic macro- and micronutrient complexity of foods and individual responses. Evidence of healthy effects of food requires new strategies not only to stratify populations according to their metabolic requirements but also to predict and measure individual responses to dietary intakes. The influence of the gut microbiome and its interaction with the host is pivotal to understand nutrition and metabolism. Thus, the modulation of the gut microbiome composition by alteration of food habits has potentialities in health improvement or even disease prevention. Dietary polyphenols are naturally occurring constituents in vegetables and fruits, including coffee and cocoa. They are commonly associated to health benefits, although mechanistic evidence in vivo is not yet fully understood. Polyphenols are extensively metabolized by gut bacteria into a complex series of end-products that support a significant effect on the functional ecology of symbiotic partners that can affect the host physiology. This review reports recent nutritional metabolomics inspections of gut microbiota-host metabolic interactions with a particular focus on the cometabolism of cocoa and coffee polyphenols.


Assuntos
Cacau/metabolismo , Café/metabolismo , Metaboloma , Metagenoma , Polifenóis/metabolismo , Animais , Bactérias/metabolismo , Biotransformação , Dieta , Digestão , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Metabolômica
15.
J Proteome Res ; 10(12): 5523-35, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22029571

RESUMO

The underlying biochemical consequences of inflammatory bowel disease (IBD) on the systemic and gastrointestinal metabolism have not yet been fully elucidated but could help to better understand the disease pathogenesis and to identify tissue-specific markers associated with the different disease stages. Here, we applied a metabonomic approach to monitor metabolic events associated with the gradual development of Crohn's disease (CD)-like ileitis in the TNF(ΔARE/WT) mouse model. Metabolic profiles of different intestinal compartments from the age of 4 up to 24 weeks were generated by combining proton nuclear magnetic resonance ((1)H NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). From 8 weeks onward, mice developed CD similar to the immune and tissue-related phenotype of human CD with ileal involvement, including ileal histological abnormalities, reduced fat mass and body weight, as well as hallmarks of malabsorption with higher energy wasting. The metabonomic approach highlighted shifts in the intestinal lipid metabolism concomitant to the histological onset of inflammation. Moreover, the advanced disease status was characterized by a significantly altered metabolism of cholesterol, triglycerides, phospholipids, plasmalogens, and sphingomyelins in the inflamed tissue (ileum) and the adjacent intestinal parts (proximal colon). These results describe different biological processes associated with the disease onset, including modifications of the general cell membrane composition, alteration of energy homeostasis, and finally the generation of inflammatory lipid mediators. Taken together, this provides novel insights into IBD-related alterations of specific lipid-dependant processes during inflammatory states.


Assuntos
Ileíte/etiologia , Doenças Inflamatórias Intestinais/patologia , Metabolômica/métodos , Fator de Necrose Tumoral alfa/genética , Tecido Adiposo/química , Animais , Composição Corporal , Membrana Celular/química , Cromatografia Líquida/métodos , Doença de Crohn/etiologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Metabolismo Energético , Ileíte/genética , Ileíte/patologia , Mediadores da Inflamação/análise , Mediadores da Inflamação/química , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fator de Necrose Tumoral alfa/química , Redução de Peso
16.
J Proteome Res ; 8(5): 2376-87, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19323467

RESUMO

Evidence has linked genetic predisposition and environmental exposures to the worldwide pandemic of inflammatory bowel diseases (IBD), but underlying biochemical events remain largely undefined. Here, we studied the gradual development of colitis in Interleukin 10 deficient mice using a combination of (i) histopathological analysis of intestinal sections, (ii) metabolic profiling of blood plasma, and (iii) measurement of plasma inflammatory biomarkers. Data integration using chemometric tools, including Independent Component Analysis, provided a new strategy for measuring and mapping the metabolic effects associated with the development of intestinal inflammation at the age of 1, 8, 16, and 24 weeks. Chronic inflammation appeared at 8 weeks and onward, and was associated with altered cecum and colon morphologies and increased inflammatory cell infiltration into the mucosa and the submucosa. Blood plasma profiles provided additional evidence of loss of energy homeostasis, impaired metabolism of lipoproteins and glycosylated proteins. In particular, IL-10-/-mice were characterized by decreased levels of VLDL and increased concentrations of LDL and polyunsaturated fatty acids, which are related to the etiology of IBD. Moreover, higher levels of lactate, pyruvate, citrate and lowered glucose suggested increased fatty acid oxidation and glycolysis, while higher levels of free amino acids reflected muscle atrophy, breakdown of proteins and interconversions of amino acids to produce energy. These integrated system investigations demonstrate the potential of metabonomics for investigating the mechanistic basis of IBD, and it will provide novel avenues for management of IBD.


Assuntos
Colite/sangue , Interleucina-10/deficiência , Metaboloma , Metabolômica/métodos , Amiloide/sangue , Animais , Glicemia/metabolismo , Ceco/metabolismo , Ceco/patologia , Citratos/sangue , Colite/genética , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Progressão da Doença , Ácidos Graxos Insaturados/sangue , Interleucina-10/genética , Interleucina-10/fisiologia , Lactatos/sangue , Lipoproteínas LDL/sangue , Lipoproteínas VLDL/sangue , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Piruvatos/sangue , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA