Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pediatr Dev Pathol ; 26(4): 406-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278357

RESUMO

Inherited syndromes of congenital enteropathy are rare, with many genetic causes described. Mutations of the AP1S1 gene results in the syndrome of intellectual disability, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma (IDEDNIK, formerly in the medical literature as MEDNIK). The clinicopathologic features of the enteropathy in IDEDNIK syndrome have not been fully explored. We describe a female infant who presented with metabolic acidosis, lethargy, and 14 watery stools per day. In the intensive care unit she required parenteral nutrition. She was found to have a novel homozygous pathogenic variant in the AP1S1 gene c.186T>G (p.Y62*). Esophagogastroduodenoscopy and colonoscopy at 6 months of age were grossly normal. However, histologic sections of the duodenum showed mild villous blunting and enterocytes with cytoplasmic vacuoles. CD10 immunostaining highlighted the disrupted brush border. MOC31 immunostaining was wild-type with a membranous pattern of expression. Electron microscopy of the duodenum showed scattered enterocytes cells with shortened and disrupted apical microvilli. Although there is a mixed gap diarrhea and disrupted brush border, there are no significant inclusions typical of microvillus inclusion disease, nor tufted enterocytes typical of tufting enteropathy, making the clinical and histopathologic features for this syndrome unique.


Assuntos
Subunidades sigma do Complexo de Proteínas Adaptadoras , Síndromes de Malabsorção , Feminino , Humanos , Lactente , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Diarreia/genética , Duodeno , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/metabolismo , Mutação , Síndrome
2.
J Pediatr Gastroenterol Nutr ; 74(5): 575-581, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149643

RESUMO

BACKGROUND AND AIMS: The initial description of a heterozygous dominant ACTG2 variant in familial visceral myopathy was followed by the identification of additional variants in other forms of intestinal dysmotility disorders. we aimed to describe the diverse phenotype of this newly reported and rare disease. METHODS: Report of 4 new patients, and a systematic review of ACTG2-related disorders. we analyzed the population frequency and used in silico gene damaging predictions. Genotype-phenotype correlations were explored. RESULTS: One hundred three patients (52% girls), from 14 publications, were included. Twenty-eight unique variants were analyzed, all exceedingly rare, and 27 predicted to be highly damaging. The median Combined Annotation Dependent Depletion (CADD) score was 29.2 (Interquartile range 26.3-29.4). Most patients underwent abdominal surgery (66%), about half required intermittent bladder catheterization (48.5%), and more than half were parenteral nutrition (PN)-dependent (53%). One-quarter of the patients died (25.7%), and 6 required transplant (5.8%). Girls had a higher rate of microcolon (P  = 0.009), PN dependency (P = 0.003), and death/transplant (P = 0.029) compared with boys, and early disease onset (<2 years of age) was associated with megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) features. There was no statistical association between disease characteristics and CADD scores. CONCLUSIONS: Damaging ACTG2 variants are rare, often associated with MMIHS phenotype, and overall have a wide phenotypic variation. Symptoms usually present in the perinatal period but can also appear at a later age. The course of the disease is marked by frequent need for surgical interventions, PN support, and mortality. Poor outcomes are more common among girls with ACTG2 variants.


Assuntos
Anormalidades Múltiplas , Pseudo-Obstrução Intestinal , Anormalidades Múltiplas/diagnóstico , Actinas/genética , Colo/anormalidades , Feminino , Humanos , Pseudo-Obstrução Intestinal/diagnóstico , Pseudo-Obstrução Intestinal/genética , Masculino , Fenótipo , Gravidez , Bexiga Urinária/anormalidades
3.
Cell Mol Gastroenterol Hepatol ; 13(4): 1095-1120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35017061

RESUMO

BACKGROUND AND AIMS: Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease. We previously reported that absence of macrophage cyclooxygenase 2 (COX2) exacerbates inflammatory bowel disease-like intestinal inflammation. To elucidate the underlying pathogenic mechanism, we investigated here whether COX2 mediates macrophage efferocytosis and efferocytosis-dependent reprogramming, including intestinal epithelial repair capacity. METHODS: Using apoptotic neutrophils and synthetic apoptotic targets, we determined the effects of macrophage specific Cox2 knockout and pharmacological COX2 inhibition on the efferocytosis capacity of mouse primary macrophages. COX2-mediated efferocytosis-dependent eicosanoid lipidomics was determined by liquid chromatography tandem mass spectrometry. Small intestinal epithelial organoids were employed to assay the effects of COX2 on efferocytosis-dependent intestinal epithelial repair. RESULTS: Loss of COX2 impaired efferocytosis in mouse primary macrophages, in part, by affecting the binding capacity of macrophages for apoptotic cells. This effect was comparable to that of high-dose lipopolysaccharide and was accompanied by both dysregulation of macrophage polarization and the inhibited expression of genes involved in apoptotic cell binding. COX2 modulated the production of efferocytosis-dependent lipid inflammatory mediators that include the eicosanoids prostaglandin I2, prostaglandin E2, lipoxin A4, and 15d-PGJ2; and further affected secondary efferocytosis. Finally, macrophage efferocytosis induced, in a macrophage COX2-dependent manner, a tissue restitution and repair phenotype in intestinal epithelial organoids. CONCLUSIONS: Macrophage COX2 potentiates efferocytosis capacity and efferocytosis-dependent reprogramming, facilitating macrophage intestinal epithelial repair capacity.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Doenças Inflamatórias Intestinais , Fagocitose , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/farmacologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Camundongos , Fagocitose/genética
4.
J Pediatr Surg ; 56(2): 346-351, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32709529

RESUMO

BACKGROUND/PURPOSE: Intraluminal springs have recently been shown to lengthen segments of intestine in a process known as distraction enterogenesis. We hypothesized that biocompatible springs could be used to lengthen defunctionalized murine small intestine and would lead to identifiable intestinal adaptations at the molecular level. METHODS: Age and weight matched C57BL/6 mice underwent surgical insertion of nitinol spring-loaded capsules into a Roux limb of jejunum. Segment lengths were measured at initial spring placement and at euthanasia after 14 and 21 days. Histology and gene expression of the Roux limb were evaluated at scarification and compared to untreated control segments. RESULTS: Intestinal segments loaded with compressed springs lengthened an average of 240%, which was significantly longer than control segments loaded with either empty capsules or uncompressed springs. Muscularis thickening was greater in spring-treated mice compared to controls without springs. Crypt depth and Lgr5+ expression was greater in mice that received compressed spring treatments when compared to control groups. CONCLUSIONS: Insertion of a compressed nitinol spring into a Roux limb results in significant intestinal lengthening, smooth muscle thickening, and Lgr5+ expression in a mouse model. The ability to increase small bowel length in a defunctionalized murine model may be used to understand the mechanism of distraction enterogenesis.


Assuntos
Intestinos/cirurgia , Síndrome do Intestino Curto , Dispositivos para Expansão de Tecidos , Animais , Jejuno/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Intestino Curto/cirurgia , Expansão de Tecido
5.
Cell Transplant ; 29: 963689720903709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907378

RESUMO

Human small intestinal crypts are the source of intestinal stem cells (ISCs) that are capable of undergoing self-renewal and differentiation to an epithelial layer. The development of methods to expand the ISCs has provided opportunities to model human intestinal epithelial disorders. Human crypt samples are usually obtained from either endoscopic or discarded surgical samples, and are thereby exposed to warm ischemia, which may impair their in vitro growth as three-dimensional culture as spheroids or enteroids. In this study we compared duodenal samples obtained from discarded surgical samples to those isolated from whole-body preserved cadaveric donors to generate in vitro cultures. We also examined the effect of storage solution (phosphate-buffered saline or University of Wisconsin [UW] solution) as well as multiple storage times on crypt isolation and growth in culture. We found that intestinal crypts were successfully isolated from cadaveric tissue stored for up to 144 h post-procurement and also were able to generate enteroids and spheroids in certain media conditions. Surgical samples stored in UW after procurement were sufficiently viable up to 24 h and also allowed the generation of enteroids and spheroids. We conclude that surgical samples stored for up to 24 h post-procurement in UW solution allowed for delayed crypt isolation and viable in vitro cultures. Furthermore, in situ, hypothermic preservation in cadaveric duodenal samples permitted crypt/ISC isolation, and successful culture of spheroids and enteroids from tissues held for up to 6 days post-procurement.


Assuntos
Técnicas de Cultura de Células/métodos , Intestinos/fisiopatologia , Cadáver , Diferenciação Celular , Humanos
6.
J Biol Chem ; 294(41): 15182-15192, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341016

RESUMO

Neurogenin-3 (NEUROG3) is a helix-loop-helix (HLH) transcription factor involved in the production of endocrine cells in the intestine and pancreas of humans and mice. However, the human NEUROG3 loss-of-function phenotype differs subtly from that in mice, but the reason for this difference remains poorly understood. Because NEUROG3 expression precedes exit of the cell cycle and the expression of endocrine cell markers during differentiation, we investigated the effect of lentivirus-mediated overexpression of the human NEUROG3 gene on the cell cycle of BON4 cells and various human nonendocrine cell lines. NEUROG3 overexpression induced a reversible cell cycle exit, whereas expression of a neuronal lineage homolog, NEUROG1, had no such effect. In endocrine lineage cells, the cellular quiescence induced by short-term NEUROG3 expression required cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21CIP1 expression. Expression of endocrine differentiation markers required sustained NEUROG3 expression in the quiescent, but not in the senescent, state. Inhibition of the phosphatase and tensin homolog (PTEN) pathway reversed quiescence by inducing cyclin-dependent kinase 2 (CDK2) and reducing p21CIP1 and NEUROG3 protein levels in BON4 cells and human enteroids. We discovered that NEUROG3 expression stimulates expression of CDKN2a/p16INK4a and BMI1 proto-oncogene polycomb ring finger (BMI1), with the latter limiting expression of the former, delaying the onset of CDKN2a/p16INK4a -driven cellular senescence. Furthermore, NEUROG3 bound to the promoters of both CDKN1a/p21CIP1 and BMI1 genes, and BMI1 attenuated NEUROG3 binding to the CDKN1a/p21CIP1 promoter. Our findings reveal how human NEUROG3 integrates inputs from multiple signaling pathways and thereby mediates cell cycle exit at the onset of differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pontos de Checagem do Ciclo Celular , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Linhagem Celular , Senescência Celular , Regulação da Expressão Gênica , Genes p16 , Humanos , Proto-Oncogene Mas
7.
J Clin Invest ; 129(9): 3670-3685, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184596

RESUMO

Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn's-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge. Cox2 MKO also reduced inflammation resolving lipoxin A4 (LXA4) in intestinal tissue, while administration of an LXA4 analog rescued disease in Cox2 MKO mice fed CCHF. The apolipoprotein A-I (APOA1) mimetic 4F mitigated disease in both the Cox2 MKO/CCHF and piroxicam-accelerated Il10-/- models of inflammatory bowel disease (IBD) and reduced elevated levels of pro-inflammatory mediators in tissue and plasma. APOA1 mimetic Tg6F therapy was also effective in reducing intestinal inflammation in the Cox2 MKO/CCHF model. We further demonstrated that APOA1 mimetic peptides: i) inhibited LPS and oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidylcholine (oxPAPC) dependent pro-inflammatory responses in human macrophages and intestinal epithelium; and ii) directly cleared pro-inflammatory lipids from mouse intestinal tissue and plasma. Our results support a causal role for pro-inflammatory and inflammation resolving lipids in IBD pathology and a translational potential for APOA1 mimetic peptides for the treatment of IBD.


Assuntos
Apolipoproteína A-I/farmacologia , Ciclo-Oxigenase 2/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/patologia , Animais , Modelos Animais de Doenças , Endotoxinas/metabolismo , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Peptídeos/química , Permeabilidade , Piroxicam/farmacologia , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais
8.
PLoS One ; 14(5): e0216326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150401

RESUMO

Adult intestinal epithelial stem cells are a promising resource for treatment of intestinal epithelial disorders that cause intestinal failure and for intestinal tissue engineering. We developed two different animal models to study the implantation of cultured murine and human intestinal epithelial cells in the less differentiated "spheroid" state and the more differentiated "enteroid" state into the denuded small intestine of mice. Engraftment of donor cells could not be achieved while the recipient intestine remained in continuity. However, we were able to demonstrate successful implantation of murine and human epithelial cells when the graft segment was in a bypassed loop of jejunum. Implantation of donor cells occurred in a random fashion in villus and crypt areas. Engraftment was observed in 75% of recipients for murine and 36% of recipients for human cells. Engrafted spheroid cells differentiated into the full complement of intestinal epithelial cells. These findings demonstrate for the first time successful engraftment into the small bowel which is optimized in a bypassed loop surgical model.


Assuntos
Células Epiteliais/transplante , Intestino Delgado/citologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Sobrevivência de Enxerto , Humanos , Jejuno , Camundongos , Esferoides Celulares/transplante
9.
Hum Mutat ; 40(2): 142-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461124

RESUMO

The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane-bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3' end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556-14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype-phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Diarreia Infantil/genética , Molécula de Adesão da Célula Epitelial/química , Síndromes de Malabsorção/genética , Modelos Moleculares , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Diarreia Infantil/patologia , Molécula de Adesão da Célula Epitelial/genética , Células Epiteliais/metabolismo , Estudos de Associação Genética , Humanos , Síndromes de Malabsorção/patologia , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto/genética , Sítios de Splice de RNA/genética
10.
J Pediatr Gastroenterol Nutr ; 68(5): 689-694, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30540707

RESUMO

OBJECTIVE: Recent studies show increased serum and esophageal IgG4 in patients with eosinophilic esophagitis (EoE), suggesting a possible IgG4-involved process. The role of IgG4 in pediatric EoE has not been extensively investigated. Our aim was to analyze IgG4 in esophageal tissue in children in parallel to that in adults with EoE. METHODS: In a retrospective institutional review board-approved study, we performed immunohistochemical staining of IgG4 in esophageal biopsy specimens from 39 subjects: children with EoE (n = 16), adults with EoE (n = 15), children with reflux esophagitis (n = 4), and pediatric controls (n = 4). We assessed the relationships between IgG4 staining and clinical, endoscopic, and histopathologic characteristics. RESULTS: Patients with EoE were significantly more likely to stain positively for IgG4 than children with reflux esophagitis or controls (P = 0.015). Fifteen of 31 (48%) EoE cases stained positively for IgG4. None of the reflux esophagitis or control cases stained positively. IgG4 staining had 48% sensitivity and 100% specificity for EoE. There was a trend toward IgG4 staining being associated with foreign body/food impaction (P = 0.153). There was a strong association between distal IgG4 staining and basal zone hyperplasia (P = 0.003). CONCLUSIONS: Our study suggests IgG4 is not a consistent finding of EoE at disease diagnosis. Although IgG4 staining was specific for EoE, it had a poor sensitivity with positive staining in only 48% of EoE patients. Further studies are warranted to fully elucidate the role of IgG4 in EoE.


Assuntos
Esofagite Eosinofílica/diagnóstico , Esofagite Péptica/diagnóstico , Esôfago/química , Imunoglobulina G/análise , Imuno-Histoquímica/estatística & dados numéricos , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Esofagoscopia/estatística & dados numéricos , Esôfago/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
11.
Gastroenterology ; 154(8): 2045-2059.e6, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29654747

RESUMO

Diarrhea is common in infants (children less than 2 years of age), usually acute, and, if chronic, commonly caused by allergies and occasionally by infectious agents. Congenital diarrheas and enteropathies (CODEs) are rare causes of devastating chronic diarrhea in infants. Evaluation of CODEs is a lengthy process and infrequently leads to a clear diagnosis. However, genomic analyses and the development of model systems have increased our understanding of CODE pathogenesis. With these advances, a new diagnostic approach is needed. We propose a revised approach to determine causes of diarrhea in infants, including CODEs, based on stool analysis, histologic features, responses to dietary modifications, and genetic tests. After exclusion of common causes of diarrhea in infants, the evaluation proceeds through analyses of stool characteristics (watery, fatty, or bloody) and histologic features, such as the villus to crypt ratio in intestinal biopsies. Infants with CODEs resulting from defects in digestion, absorption, transport of nutrients and electrolytes, or enteroendocrine cell development or function have normal villi to crypt ratios; defects in enterocyte structure or immune-mediated conditions result in an abnormal villus to crypt ratios and morphology. Whole-exome and genome sequencing in the early stages of evaluation can reduce the time required for a definitive diagnosis of CODEs, or lead to identification of new variants associated with these enteropathies. The functional effects of gene mutations can be analyzed in model systems such as enteroids or induced pluripotent stem cells and are facilitated by recent advances in gene editing procedures. Characterization and investigation of new CODE disorders will improve management of patients and advance our understanding of epithelial cells and other cells in the intestinal mucosa.


Assuntos
Diarreia Infantil/diagnóstico , Enterócitos/patologia , Células Enteroendócrinas/patologia , Enteropatias/diagnóstico , Biópsia , Doença Crônica , Procedimentos Clínicos , Diarreia Infantil/classificação , Diarreia Infantil/etiologia , Diarreia Infantil/patologia , Endoscopia do Sistema Digestório , Enterócitos/metabolismo , Células Enteroendócrinas/metabolismo , Testes Genéticos/métodos , Humanos , Lactente , Recém-Nascido , Enteropatias/classificação , Enteropatias/etiologia , Enteropatias/patologia , Mutação , Sequenciamento Completo do Genoma
12.
Cell Stem Cell ; 22(2): 206-220.e4, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395055

RESUMO

Adequate availability of cellular building blocks, including lipids, is a prerequisite for cellular proliferation, but excess dietary lipids are linked to increased cancer risk. Despite these connections, specific regulatory relationships between membrane composition, intestinal stem cell (ISC) proliferation, and tumorigenesis are unclear. We reveal an unexpected link between membrane phospholipid remodeling and cholesterol biosynthesis and demonstrate that cholesterol itself acts as a mitogen for ISCs. Inhibition of the phospholipid-remodeling enzyme Lpcat3 increases membrane saturation and stimulates cholesterol biosynthesis, thereby driving ISC proliferation. Pharmacologic inhibition of cholesterol synthesis normalizes crypt hyperproliferation in Lpcat3-deficient organoids and mice. Conversely, increasing cellular cholesterol content stimulates crypt organoid growth, and providing excess dietary cholesterol or driving endogenous cholesterol synthesis through SREBP-2 expression promotes ISC proliferation in vivo. Finally, disruption of Lpcat3-dependent phospholipid and cholesterol homeostasis dramatically enhances tumor formation in Apcmin mice. These findings identify a critical dietary-responsive phospholipid-cholesterol axis regulating ISC proliferation and tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Colesterol/metabolismo , Intestinos/patologia , Fosfolipídeos/metabolismo , Células-Tronco/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/deficiência , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Vias Biossintéticas , Carcinogênese/patologia , Proliferação de Células , Camundongos , Organoides/metabolismo
13.
AAPS J ; 20(1): 17, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234895

RESUMO

Recent advances in our understanding of the intestinal stem cell niche and the role of key signaling pathways on cell growth and maintenance have allowed the development of fully differentiated epithelial cells in 3D organoids. Stem cell-derived organoids carry significant levels of proteins that are natively expressed in the gut and have important roles in drug transport and metabolism. They are, therefore, particularly relevant to study the gastrointestinal (GI) absorption of oral medications. In addition, organoids have the potential to serve as a robust preclinical model for demonstrating the effectiveness of new drugs more rapidly, with more certainty, and at lower costs compared with live animal studies. Importantly, because they are derived from individuals with different genotypes, environmental risk factors and drug sensitivity profiles, organoids are a highly relevant screening system for personalized therapy in both human and veterinary medicine. Lastly, and in the context of patient-specific congenital diseases, orthotopic transplantation of engineered organoids could repair and/or replace damaged epithelial tissues reported in various GI diseases, such as inflammatory bowel disease, cystic fibrosis, and tuft enteropathy. Ongoing translational research on organoids derived from dogs with naturally occurring digestive disorders has the potential to improve the predictability of preclinical models used for optimizing the therapeutic management of severe chronic enteropathies in human patients.


Assuntos
Descoberta de Drogas , Intestinos/citologia , Organoides/fisiologia , Medicina Regenerativa , Células-Tronco/fisiologia , Pesquisa Translacional Biomédica , Animais , Cães , Humanos , Medicina de Precisão
14.
Tech Coloproctol ; 21(10): 795-802, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28755255

RESUMO

BACKGROUND: The aim of the present study was to evaluate the diagnostic accuracy of magnetic resonance (MR) defecography and compare it with videodefecography in the evaluation of obstructed defecation syndrome. METHODS: This was a prospective cohort test accuracy study conducted at one major tertiary referral center on patients with a diagnosis of obstructed defecation syndrome who were referred to the colorectal surgery clinic in a consecutive series from 2009 to 2012. All patients underwent a clinical examination, videodefecography, and MR defecography in the supine position. We analyzed diagnostic accuracy for MR defecography and performed an agreement analysis using Cohen's kappa index (κ) for each diagnostic imaging examination performed with videodefecography and MR defecography. RESULTS: We included 40 patients with Rome III diagnostic criteria of obstructed defecation syndrome. The degree of agreement between the two tests was as follows: almost perfect for anismus (κ = 0.88) and rectal prolapse (κ = 0.83), substantial for enterocele (κ = 0.80) and rectocele grade III (κ = 0.65), moderate for intussusception (κ = 0.50) and rectocele grade II (κ = 0.49), and slight for rectocele grade I (κ = 0.30) and excessive perineal descent (κ = 0.22). Eighteen cystoceles and 11 colpoceles were diagnosed only by MR defecography. Most patients (54%) stated that videodefecography was the more uncomfortable test. CONCLUSIONS: MR defecography could become the imaging test of choice for evaluating obstructed defecation syndrome.


Assuntos
Constipação Intestinal/diagnóstico por imagem , Defecografia/métodos , Imageamento por Ressonância Magnética , Gravação em Vídeo , Adulto , Idoso , Feminino , Humanos , Intussuscepção/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prolapso Retal/diagnóstico por imagem , Retocele/diagnóstico por imagem , Decúbito Dorsal , Síndrome
15.
Cell Stem Cell ; 21(1): 78-90.e6, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28686870

RESUMO

Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.


Assuntos
Antígenos de Diferenciação/metabolismo , Células Enteroendócrinas/metabolismo , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Jejuno/lesões , Jejuno/metabolismo , Células-Tronco/metabolismo , Animais , Antígenos de Diferenciação/genética , Células Enteroendócrinas/patologia , Regulação da Expressão Gênica , Mucosa Intestinal/patologia , Jejuno/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco/patologia
16.
Stem Cells Transl Med ; 6(2): 666-676, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191783

RESUMO

Intestinal failure is a rare life-threatening condition that results in the inability to maintain normal growth and hydration status by enteral nutrition alone. Although parenteral nutrition and whole organ allogeneic transplantation have improved the survival of these patients, current therapies are associated with a high risk for morbidity and mortality. Development of methods to propagate adult human intestinal stem cells (ISCs) and pluripotent stem cells raises the possibility of using stem cell-based therapy for patients with monogenic and polygenic forms of intestinal failure. Organoids have demonstrated the capacity to proliferate indefinitely and differentiate into the various cellular lineages of the gut. Genome-editing techniques, including the overexpression of the corrected form of the defective gene, or the use of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to selectively correct the monogenic disease-causing variant within the stem cell, make autologous ISC transplantation a feasible approach. However, numerous techniques still need to be further optimized, including more robust ex vivo ISC expansion, native ISC ablation, and engraftment protocols. Large-animal models can to be used to develop such techniques and protocols and to establish the safety of autologous ISC transplantation because outcomes in such models can be extrapolated more readily to humans. Stem Cells Translational Medicine 2017;6:666-676.


Assuntos
Edição de Genes/métodos , Intestinos/transplante , Regeneração , Síndrome do Intestino Curto/cirurgia , Transplante de Células-Tronco/métodos , Células-Tronco , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Intestinos/patologia , Intestinos/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Risco , Síndrome do Intestino Curto/genética , Síndrome do Intestino Curto/patologia , Síndrome do Intestino Curto/fisiopatologia , Transdução de Sinais , Transplante de Células-Tronco/efeitos adversos , Células-Tronco/metabolismo , Células-Tronco/patologia , Resultado do Tratamento
18.
Cell Tissue Res ; 365(1): 123-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26928041

RESUMO

Porcine models are useful for investigating therapeutic approaches to short bowel syndrome and potentially to intestinal stem cell (ISC) transplantation. Whereas techniques for the culture and genetic manipulation of ISCs from mice and humans are well established, similar methods for porcine stem cells have not been reported. Jejunal crypts were isolated from murine, human, and juvenile and adult porcine small intestine, suspended in Matrigel, and co-cultured with syngeneic intestinal subepithelial myofibroblasts (ISEMFs) or cultured without feeder cells in various culture media. Media containing epidermal growth factor, noggin, and R-spondin 1 (ENR medium) were supplemented with various combinations of Wnt3a- or ISEMF-conditioned medium (CM) and with glycogen synthase kinase 3 inhibitor (GSK3i), and their effects were studied on cultured crypts. Cell lineage differentiation was assessed by immunohistochemistry and quantitative polymerase chain reaction. Cultured porcine cells were serially passaged and transduced with a lentiviral vector. Whereas ENR medium supported murine enteroid growth, it did not sustain porcine crypts beyond 5 days. Supplementation of Wnt3a-CM and GSK3i resulted in the formation of complex porcine enteroids with budding extensions. These enteroids contained a mixture of stem and differentiated cells and were successfully passaged in the presence of GSK3i. Crypts grown in media supplemented with porcine ISEMF-CM formed spheroids that were less well differentiated than enteroids. Enteroids and spheroids were transfected with a lentivirus with high efficiency. Thus, our method maintains juvenile and adult porcine crypt cells long-term in culture. Porcine enteroids and spheroids can be successfully passaged and transduced by using lentiviral vectors.


Assuntos
Envelhecimento/fisiologia , Intestinos/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Criopreservação , Meios de Cultivo Condicionados/farmacologia , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Camundongos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Sus scrofa , Temperatura , Transdução Genética
19.
J Pediatr Surg ; 51(6): 995-1000, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26995514

RESUMO

PURPOSE: Current culture schema for human intestinal stem cells (hISCs) frequently rely on a 3D culture system using Matrigel™, a laminin-rich matrix derived from murine sarcoma that is not suitable for clinical use. We have developed a novel 2D culture system for the in vitro expansion of hISCs as an intestinal epithelial monolayer without the use of Matrigel. METHODS: Cadaveric duodenal samples were processed to isolate intestinal crypts from the mucosa. Crypts were cultured on a thin coat of type I collagen or laminin. Intestinal epithelial monolayers were supported with growth factors to promote self-renewal or differentiation of the hISCs. Proliferating monolayers were sub-cultured every 4-5days. RESULTS: Intestinal epithelial monolayers were capable of long-term cell renewal. Less differentiated monolayers expressed high levels of gene marker LGR5, while more differentiated monolayers had higher expressions of CDX2, MUC2, LYZ, DEF5, and CHGA. Furthermore, monolayers were capable of passaging into a 3D culture system to generate spheroids and enteroids. CONCLUSION: This 2D system is an important step to expand hISCs for further experimental studies and for clinical cell transplantation. LEVEL OF EVIDENCE: 1 Experimental.


Assuntos
Células Epiteliais/citologia , Mucosa Intestinal/citologia , Células-Tronco/citologia , Materiais Biocompatíveis , Cadáver , Técnicas de Cultura de Células , Colágeno Tipo I , Humanos , Técnicas In Vitro , Laminina
20.
PLoS One ; 11(1): e0148216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820624

RESUMO

BACKGROUND & AIMS: Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. METHODS: Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. RESULTS: Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. CONCLUSIONS: Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome.


Assuntos
Mucosa Intestinal/citologia , Intestino Delgado/citologia , Nódulos Linfáticos Agregados/citologia , Células-Tronco/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Ligante RANK/imunologia , Salmonella typhimurium/imunologia , Células-Tronco/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA