Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 57(17): 2127-2139.e6, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977545

RESUMO

Microglia, the brain's resident macrophages, shape neural development and are key neuroimmune hubs in the pathological signatures of neurodevelopmental disorders. Despite the importance of microglia, their development has not been carefully examined in the human brain, and most of our knowledge derives from rodents. We aimed to address this gap in knowledge by establishing an extensive collection of 97 post-mortem tissues in order to enable quantitative, sex-matched, detailed analysis of microglia across the human lifespan. We identify the dynamics of these cells in the human telencephalon, describing waves in microglial density across gestation, infancy, and childhood, controlled by a balance of proliferation and apoptosis, which track key neurodevelopmental milestones. These profound changes in microglia are also observed in bulk RNA-seq and single-cell RNA-seq datasets. This study provides a detailed insight into the spatiotemporal dynamics of microglia across the human lifespan and serves as a foundation for elucidating how microglia contribute to shaping neurodevelopment in humans.


Assuntos
Longevidade , Microglia , Encéfalo/patologia , Criança , Humanos , Macrófagos , Neurogênese
2.
Front Immunol ; 11: 579000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162994

RESUMO

The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Encéfalo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interleucinas/antagonistas & inibidores , Microglia/efeitos dos fármacos , Degeneração Neural , Doenças Priônicas/tratamento farmacológico , Animais , Anticorpos Monoclonais/toxicidade , Anticorpos Neutralizantes/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genes fms , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais
3.
PLoS One ; 12(8): e0182450, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763502

RESUMO

Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the embryonic retina by inducing chemokinesis in these cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Caspase 3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Microglia/citologia , Retina/embriologia , Difosfato de Uridina/metabolismo , Animais , Sobrevivência Celular , Quimiotaxia , Ativação Enzimática , Microscopia Confocal , Nervo Óptico/patologia , Codorniz , Receptores Purinérgicos/metabolismo , Retina/fisiologia , Transdução de Sinais , Fatores de Tempo
4.
PLoS One ; 10(8): e0135238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252475

RESUMO

The role of microglia during neurodegeneration remains controversial. We investigated whether microglial cells have a neurotoxic or neuroprotective function in the retina. Retinal explants from 10-day-old mice were treated in vitro with minocycline to inhibit microglial activation, with LPS to increase microglial activation, or with liposomes loaded with clodronate (Lip-Clo) to deplete microglial cells. Flow cytometry was used to assess the viability of retinal cells in the explants and the TUNEL method to show the distribution of dead cells. The immunophenotypic and morphological features of microglia and their distribution were analyzed with flow cytometry and immunocytochemistry. Treatment of retinal explants with minocycline reduced microglial activation and simultaneously significantly decreased cell viability and increased the presence of TUNEL-labeled cell profiles. This treatment also prevented the migration of microglial cells towards the outer nuclear layer, where cell death was most abundant. The LPS treatment increased microglial activation but had no effect on cell viability or microglial distribution. Finally, partial microglial removal with Lip-Clo diminished the cell viability in the retinal explants, showing a similar effect to that of minocycline. Hence, cell viability is diminished in retinal explants cultured in vitro when microglial cells are removed or their activation is inhibited, indicating a neurotrophic role for microglia in this system.


Assuntos
Ácido Clodrônico/química , Microglia/citologia , Nervo Óptico/crescimento & desenvolvimento , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Ácido Clodrônico/administração & dosagem , Escherichia coli , Citometria de Fluxo , Imuno-Histoquímica , Imunofenotipagem , Lipopolissacarídeos/química , Lipossomos/química , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/química , Neuroproteção , Nervo Óptico/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
5.
Invest Ophthalmol Vis Sci ; 56(2): 1301-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650421

RESUMO

PURPOSE: The purpose of this study was to investigate the incidence of DNA damage during postnatal development of the retina and the relationship between DNA damage and cell death. METHODS: DNA damage in the developing postnatal retina of C57BL/6 mice was assessed by determining the amounts of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is indicative of DNA oxidation and related to the formation of DNA single-strand breaks (SSBs), and phosphorylated histone H2AX (γ-H2AX), a marker of DNA double-strand breaks (DSBs). Poly(ADP-ribose) polymerase (PARP) activation was measured by ELISA and Western blotting. The location of γ-H2AX-positive and dying cells was determined by immunofluorescence and TUNEL assays. RESULTS: Oxidative DNA damage was maintained at low levels during high PARP activation between postnatal days 0 (P0) and P7. Phosphorylated histone H2AX gradually increased between P0 and P14 and decreased thereafter. Phosphorylated histone H2AX-positive cells with cell death morphology or TUNEL positivity were more abundant at P7 than at P14. CONCLUSIONS: Oxidative DNA damage in postnatal retina increases during development. It is low during the first postnatal week when PARP-1 activity is high but increases thereafter. The rise in DSBs when PARP activity is downregulated may be attributable to accumulated oxidative damage and SSBs. At P7 and P14, γ-H2AX-positive cells are repairing naturally occurring DNA damage, but some are dying (mostly at P7), probably due to an accumulation of irreparable DNA damage.


Assuntos
Dano ao DNA/genética , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Histonas/biossíntese , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA