Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 365: 412-421, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000663

RESUMO

Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Encéfalo/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Microbolhas
2.
Neurooncol Adv ; 5(1): vdad111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795179

RESUMO

Background: Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB opening, allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Methods: Mice were orthotopically injected with a patient-derived diffuse midline glioma (DMG) cell line, BT245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa peak negative pressure, 1 Hz pulse repetition frequency, 10-ms pulse length, 3 min treatment time)/(25 µL/kg, i.v.) targeting to the tumor location. Results: In animals receiving panobinostat (10 mg/kg, i.p.) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, without significant increase of the drug in the forebrain. In mice receiving 3 weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes (P = .01). Furthermore, we showed the first survival benefit from FUS/MB improved delivery increasing the mean survival from 21 to 31 days (P < .0001). Conclusions: Our study demonstrates that FUS-mediated BBB disruption can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.

3.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066205

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB disruption (BBBD), allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Mice were orthotopically injected with a patient-derived DMG cell line, BT-245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa PNP, 1 Hz PRF, 10 ms PL, 3 min treatment time) / (25 µL/kg, IV) targeting to the tumor location. In animals receiving panobinostat (10 mg/kg, IP) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, with only insignificant increase of the drug in the forebrain. In mice receiving three weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes by MRI ( p = 0.01). Furthermore, FUS/MB improved the mean survival from 21 to 31 days ( p < 0.0001). Our study demonstrates that FUS-mediated BBBD can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival. One Sentence Summary: FUS and microbubbles can increase the delivery of panobinostat to a patient-derived xenograft (PDX) orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA